2 research outputs found

    NOV/CCN3 attenuates inflammatory pain through regulation of matrix metalloproteinases-2 and -9

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain.</p> <p>Methods</p> <p>We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for <it>in vitro </it>experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test.</p> <p>Results</p> <p>NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. <it>In vitro</it>, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1β- and TNF-α-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-α-induced MMP-9 expression through β<sub>1 </sub>integrin engagement. <it>In vivo</it>, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia.</p> <p>Conclusions</p> <p>This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.</p

    mSep: investigating physiological and immune-metabolic biomarkers in septic and healthy pregnant women to predict feto-maternal immune health – a prospective observational cohort study protocol

    Get PDF
    Introduction: Maternal sepsis remains a leading cause of death in pregnancy. Physiological adaptations to pregnancy obscure early signs of sepsis and can result in delays in recognition and treatment. Identifying biomarkers that can reliably diagnose sepsis will reduce morbidity and mortality and antibiotic overuse. We have previously identified an immune-metabolic biomarker network comprising three pathways with a >99% accuracy for detecting bacterial neonatal sepsis. In this prospective study, we will describe physiological parameters and novel biomarkers in two cohorts—healthy pregnant women and pregnant women with suspected sepsis—with the aim of mapping pathophysiological drivers and evaluating predictive biomarkers for diagnosing maternal sepsis. Methods and analysis: Women aged over 18 with an ultrasound-confirmed pregnancy will be recruited to a pilot and two main study cohorts. The pilot will involve blood sample collection from 30 pregnant women undergoing an elective caesarean section. Cohort A will follow 100 healthy pregnant women throughout their pregnancy journey, with collection of blood samples from participants at routine time points in their pregnancy: week 12 ‘booking’, week 28 and during labour. Cohort B will follow 100 pregnant women who present with suspected sepsis in pregnancy or labour and will have at least two blood samples taken during their care pathway. Study blood samples will be collected during routine clinical blood sampling. Detailed medical history and physiological parameters at the time of blood sampling will be recorded, along with the results of routine biochemical tests, including C reactive protein, lactate and white blood cell count. In addition, study blood samples will be processed and analysed for transcriptomic, lipidomic and metabolomic analyses and both qualitative and functional immunophenotyping. Ethics and dissemination: Ethical approval has been obtained from the Wales Research Ethics Committee 2 (SPON1752-19, 30 October 2019). Trial registration number: NCT05023954
    corecore