50 research outputs found

    Epigenetic effects of metformin: From molecular mechanisms to clinical implications

    Get PDF
    There is a growing body of evidence that links epigenetic modifications to type 2 diabetes. Researchers have more recently investigated effects of commonly used medications, including those prescribed for diabetes, on epigenetic processes. This work reviews the influence of the widely used antidiabetic drug metformin on epigenomics, microRNA levels and subsequent gene expression, and potential clinical implications. Metformin may influence the activity of numerous epigenetic modifying enzymes, mostly by modulating the activation of AMP-activated protein kinase (AMPK). Activated AMPK can phosphorylate numerous substrates, including epigenetic enzymes such as histone acetyltransferases (HATs), class II histone deacetylases (HDACs) and DNA methyltransferases (DNMTs), usually resulting in their inhibition; however, HAT1 activity may be increased. Metformin has also been reported to decrease expression of multiple histone methyltransferases, to increase the activity of the class III HDAC SIRT1 and to decrease the influence of DNMT inhibitors. There is evidence that these alterations influence the epigenome and gene expression, and may contribute to the antidiabetic properties of metformin and, potentially, may protect against cancer, cardiovascular disease, cognitive decline and aging. The expression levels of numerous microRNAs are also reportedly influenced by metformin treatment and may confer antidiabetic and anticancer activities. However, as the reported effects of metformin on epigenetic enzymes act to both increase and decrease histone acetylation, histone and DNA methylation, and gene expression, a significant degree of uncertainty exists concerning the overall effect of metformin on the epigenome, on gene expression, and on the subsequent effect on the health of metformin users

    BRE modulates granulosa cell death to affect ovarian follicle development and atresia in the mouse

    Get PDF
    The BRE (brain and reproductive expression) gene, highly expressed in nervous and reproductive system organs, plays an important role in modulating DNA damage repair under stress response and pathological conditions. Folliculogenesis, a process that ovarian follicle develops into maturation, is closely associated with the interaction between somatic granulosa cell and oocyte. However, the regulatory role of BRE in follicular development remains undetermined. In this context, we found that BRE is normally expressed in the oocytes and granulosa cells from the primordial follicle stage. There was a reduction in follicles number of BRE mutant (BRE(−/−)) mice. It was attributed to increase the follicular atresia in ovaries, as a result of retarded follicular development. We established that cell proliferation was inhibited, while apoptosis was markedly increased in the granulosa cells in the absence of BRE. In addition, expressions of γ-H2AX (marker for showing DNA double-strand breaks) and DNA damage-relevant genes are both upregulated in BRE(−/−) mice. In sum, these results suggest that the absence of BRE, deficiency in DNA damage repair, causes increased apoptosis in granulosa cells, which in turn induces follicular atresia in BRE(−/−) mice

    Functional Characterization of a Newly Identified Group B Streptococcus Pullulanase Eliciting Antibodies Able to Prevent Alpha-Glucans Degradation

    Get PDF
    Streptococcal pullulanases have been recently proposed as key components of the metabolic machinery involved in bacterial adaptation to host niches. By sequence analysis of the Group B Streptococcus (GBS) genome we found a novel putative surface exposed protein with pullulanase activity. We named such a protein SAP. The sap gene is highly conserved among GBS strains and homologous genes, such as PulA and SpuA, have been described in other pathogenic streptococci. The SAP protein contains two N-terminal carbohydrate-binding motifs, followed by a catalytic domain and a C-terminal LPXTG cell wall-anchoring domain. In vitro analysis revealed that the recombinant form of SAP is able to degrade α-glucan polysaccharides, such as pullulan, glycogen and starch. Moreover, NMR analysis showed that SAP acts as a type I pullulanase. Studies performed on whole bacteria indicated that the presence of α-glucan polysaccharides in culture medium up-regulated the expression of SAP on bacterial surface as confirmed by FACS analysis and confocal imaging. Deletion of the sap gene resulted in a reduced capacity of bacteria to grow in medium containing pullulan or glycogen, but not glucose or maltose, confirming the pivotal role of SAP in GBS metabolism of α-glucans. As reported for other streptococcal pullulanases, we found specific anti-SAP antibodies in human sera from healthy volunteers. Investigation of the functional role of anti-SAP antibodies revealed that incubation of GBS in the presence of sera from animals immunized with SAP reduced the capacity of the bacterium to degrade pullulan. Of interest, anti-SAP sera, although to a lower extent, also inhibited Group A Streptococcus pullulanase activity. These data open new perspectives on the possibility to use SAP as a potential vaccine component inducing functional cross-reacting antibodies interfering with streptococcal infections

    Multigenerational obesity-induced perturbations in oocyte-secreted factor signalling can be ameliorated by exercise and nicotinamide mononucleotide.

    Get PDF
    STUDY QUESTION: Can maternal and offspring high-fat diet (HFD)-induced changes in mRNA expression levels in mice be ameliorated by interventions in female offspring? SUMMARY ANSWER: Our results indicate that exercise and nicotinamide mononucleotide (NMN) can ameliorate the negative effects of maternal and post-weaning HFD in female offspring. WHAT IS KNOWN ALREADY: Maternal and post-weaning HFD can perturb offspring developmental trajectories. As rates of maternal obesity are rising globally, there is a need for effective treatments in offspring to ameliorate the negative effects from a maternal obesogenic environment. Modulation of the nicotinamide adenine dinucleotide (NAD+) pathway by exercise and the NAD+ precursor NMN has previously been shown to reduce the effects of obesity. STUDY DESIGN SIZE DURATION: This study consisted of a multigenerational study using C57Bl6 mice. Mice were fed a control (chow) or HFD ad libitum throughout mating, pregnancy and lactation (n = 13-25). Female offspring (n = 72) were then also supplied either a chow or HFD post-weaning. At 9 weeks of age offspring from HFD dams were subjected to exercise on a treadmill for 9 weeks or at 16 weeks of age administered NMN (i.p.) for 2.5 weeks. At 18.5 weeks mice were euthanized and ovaries and cumulus-oocyte complexes (COC) were collected to examine the possibility of ameliorating the negative effects of maternal and post-weaning HFD. PARTICIPANTS/MATERIALS SETTING METHODS: Ovary and COC mRNA expression was analysed using RT-qPCR. An initial screen of candidate genes was developed to test which molecular pathways may be involved in generating adverse reproductive system effects. For histological analysis, ovarian tissue was fixed in paraformaldehyde and embedded in paraffin and stained with haematoxylin and eosin. The numbers of primordial, primary, secondary and antral follicles were counted. MAIN RESULTS AND THE ROLE OF CHANCE: In the offspring's COC, maternal obesity increased both growth differentiation factor 9 (Gdf9: 2-fold; P < 0.05, HFD versus chow) and bone morphogenetic protein 15 (Bmp15: 4-fold; P < 0.05, HFD versus chow) mRNA expression levels while exercise and NMN interventions did not regulate Gdf9 and Bmp15 in the same manner. In whole ovary, maternal diet programmed a 25-50% reduction in FSH receptor and sirtuin-3 mRNA expression levels in daughter ovaries (P < 0.05, HFD versus chow). There was a significant interaction between HFD and intervention on the proportion of large preantral and preovulatory follicles (P < 0.05). However, the increase in preovulatory follicles did not translate to increased oocyte yield. NMN administration resulted in reduced body weight in HFD-fed individuals. LIMITATIONS REASONS FOR CAUTION: It is unclear if the changes in oocyte mRNA expression levels reported here will impact oocyte quality and fertility in offspring. Offspring ovulation rate or fecundity could not be studied here and fertility trials are required to determine if the changes in gene expression do reduce fertility. WIDER IMPLICATIONS OF THE FINDINGS: Our results demonstrate that maternal and offspring HFD perturbs key signalling pathways that are known to regulate fertility in mice, highlighting the importance of interventions in helping to prevent the declining rates of fertility in the context of the current obesity epidemic. STUDY FUNDING/COMPETING INTERESTS: This work was supported by grants and fellowships from the National Health and Medical Research Council to R.B.G. (APP1023210, APP1062762, APP1117538) and to M.J.M. and D.A.S. (APP1044295). DAS is a consultant to and inventor on patents licenced to Ovascience, Metrobiotech and GlaxoSmithKline. The other authors declare that there is no conflict of interest

    Prospects of Rescuing Young Eggs for Oncofertility

    No full text
    Childhood cancer patients undergoing cancer therapy can be rendered infertile during adulthood. With more girls surviving cancer, fertility preservation in young cancer patients is a major clinical challenge. Advances in egg culture may offer benefits for the fertility of these patients in the future
    corecore