184 research outputs found

    Expanding the Use of Cellular Automata

    Get PDF
    Cellular automata are a type of simulation based upon dividing space into cells. More specifically, cellular automata are characterized by parallelism, locality, and homogeneity. A simulation is run by conducting a series of updates, consisting of running a set of rules that all cells follow. The rules typically consist of looking at a cell\u27s immediate neighbors and/or itself to determine what will be in the cell at the next step. The rules are applied to all the cells at exactly the same time in exactly the same manner. The use of cellular automata has been limited to computer scientists, those who can write code, and people who understand the traditional nomenclature. Physicists, mathematicians, or even those who are just interested in different types of simulations should be able to fully explore the full potential of cellular automata. In order to expand the use of cellular automata to additional fields, my research has led to the creation of a program that allows users to easily create cellular automata without having to have foreknowledge of cellular automata terminology. The user is taken through a series of steps where they can control the size of the system, the number and speed of iterations, define the system variables in their own terms, populate the system however they wish, and make their own rules. The program also allows extreme flexibility so that non-traditional simulations can potentially be explored

    Autonomous space processor for orbital debris

    Get PDF
    Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed

    Communications platform payload definition study, executive summary

    Get PDF
    Large geostationary communications platforms have been investigated in a number of studies since 1974 as a possible means to more effectively utilize the geostationary orbital arc and electromagnetic spectrum and to reduce overall satellite communications system costs. This NASA Lewis sponsored study addresses the commercial feasibility of various communications platform payload concepts circa 1998. It defines promising payload concepts, estimates recurring costs and identifies critical technologies needed to permit eventual commercialization. Ten communications service aggregation scenarios describing potential groupings of services were developed for a range of conditions. Payload concepts were defined for four of these scenarios: (1) Land Mobile Satellite Service (LMSS), meet 100% of CONUS plus Canada demand with a single platform; (2) Fixed Satellite Service (FSS) (Trunking + Customer Premises Service (CPS), meet 20% of CONUS demands; (3) FSS (Trunking + video distribution), 10 to 13% of CONUS demand; and (4) FSS (20% of demand) + Inter Satellite Links (ISL) + TDRSS/TDAS Data Distribution

    Shoot Alberta

    No full text

    Shoot Alberta

    No full text

    Film Reviews - Adbucted

    No full text
    corecore