3,227 research outputs found

    Perturbative analysis of disordered Ising models close to criticality

    Full text link
    We consider a two-dimensional Ising model with random i.i.d. nearest-neighbor ferromagnetic couplings and no external magnetic field. We show that, if the probability of supercritical couplings is small enough, the system admits a convergent cluster expansion with probability one. The associated polymers are defined on a sequence of increasing scales; in particular the convergence of the above expansion implies the infinite differentiability of the free energy but not its analyticity. The basic tools in the proof are a general theory of graded cluster expansions and a stochastic domination of the disorder

    A nonequilibrium extension of the Clausius heat theorem

    Full text link
    We generalize the Clausius (in)equality to overdamped mesoscopic and macroscopic diffusions in the presence of nonconservative forces. In contrast to previous frameworks, we use a decomposition scheme for heat which is based on an exact variant of the Minimum Entropy Production Principle as obtained from dynamical fluctuation theory. This new extended heat theorem holds true for arbitrary driving and does not require assumptions of local or close to equilibrium. The argument remains exactly intact for diffusing fields where the fields correspond to macroscopic profiles of interacting particles under hydrodynamic fluctuations. We also show that the change of Shannon entropy is related to the antisymmetric part under a modified time-reversal of the time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende

    Pattern densities in fluid dimer models

    Full text link
    In this paper, we introduce a family of observables for the dimer model on a bi-periodic bipartite planar graph, called pattern density fields. We study the scaling limit of these objects for liquid and gaseous Gibbs measures of the dimer model, and prove that they converge to a linear combination of a derivative of the Gaussian massless free field and an independent white noise.Comment: 38 pages, 3 figure

    A diffusive system driven by a battery or by a smoothly varying field

    Full text link
    We consider the steady state of a one dimensional diffusive system, such as the symmetric simple exclusion process (SSEP) on a ring, driven by a battery at the origin or by a smoothly varying field along the ring. The battery appears as the limiting case of a smoothly varying field, when the field becomes a delta function at the origin. We find that in the scaling limit, the long range pair correlation functions of the system driven by a battery turn out to be very different from the ones known in the steady state of the SSEP maintained out of equilibrium by contact with two reservoirs, even when the steady state density profiles are identical in both models

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Hydrodynamic limit for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the hydrodynamic limit for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities

    Exact Free Energy Functional for a Driven Diffusive Open Stationary Nonequilibrium System

    Full text link
    We obtain the exact probability exp[LF({ρ(x)})]\exp[-L {\cal F}(\{\rho(x)\})] of finding a macroscopic density profile ρ(x)\rho(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system LL \to \infty. F\cal F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F\cal F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in non-convexity of F\cal F, in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state.Comment: LaTeX2e, RevTeX4, PiCTeX. Four pages, one PiCTeX figure included in TeX source fil

    Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the dynamical large deviations for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities

    Phase diagram of a generalized ABC model on the interval

    Full text link
    We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,...,Ni=1,...,N is occupied by a particle of type \a=A,B,C, with the average density of each particle species N_\a/N=r_\a fixed. These particles interact via a mean field non-reflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N\rw\infty, i/N\rw x\in[0,1] has a unique density profile \p_\a(x) except for some special values of the r_\a for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature Tc=3rArBrC/2πT_c=3\sqrt{r_A r_B r_C}/2\pi.Comment: 25 pages, 6 figure

    The Pomeron and Odderon in elastic, inelastic and total cross sections at the LHC

    Full text link
    A simple model for elastic diffractive hadron scattering, reproducing the dip-bump structure is used to analyze PP and PˉP\bar PP scattering. The main emphasis is on the delicate and non-trivial dynamics in the dip-bump region, near t=-1 GeV2^2. The simplicity of the model and the expected smallness of the absorption corrections enables one the control of various contributions to the scattering amplitude, in particular the interplay between the C-even and C-odd components of the amplitude, as well as their relative contribution, changing with s and t. The role of the non-linearity of the Regge trajectories is scrutinized. The ratio of the real to imaginary parts of the forward amplitude, the ratio of elastic to total cross sections and the inelastic cross section are calculated. Predictions for the LHC energy region, where most of the exiting models will be either confirmed or ruled out, are presented.Comment: 16 pages, 13 figures. Small correction. To be published in the International Journal of Modern Physics
    corecore