24 research outputs found

    Luftföroreningshalters relation till fibrinogenhalten i blod

    No full text
    Som ett specialprojekt om hälsorelaterad miljöövervakning har studerats om hälsoundersökningsdata avseende fibrinogenhalt i blod kan användas som en indikator på luftföroreningspåverkan. Bakgrunden är att det under senare år har publicerats flera studier i vilka samband konstaterats mellan dygnets eller de senaste dygnens luftföroreningshalt (främst partiklar eller avgaskomponenter) och det dygnsvisa antalet dödsfall eller sjukhusinläggningar p g a hjärtsjukdom. Mekanismerna bakom effekterna är inte helt klarlagda, men mycket talar för att en mekanism kan vara kroppens inflammationssvar som inducerar förändringar i blodets koaguleringsbenägenhet. Fibrinogen är en av de viktigaste faktorerna bakom blodets viskositet. Ökad fibrinogenhalt i blodplasma har tidigare konstaterats dels i samband med en luftföroreningsepisod i Tyskland och när hälsoundersökningsdata från London korrelerats till kvävedioxidhalten dygnet innan blodprovet togs. I denna undersökning har vi använt data om fibrinogenhalten (g/l) i blodprover som tagits i den befolkningsbaserade MONICA-undersökningen i Norr- och Västerbotten under januari-april 1990 och 1994, och utifrån undersökningsdatum påfört individerna uppgifter om halten av ozon respektive sot samma och intilliggande dygn. För närmare 3400 personer vars blodprov kunnat sammankopplas med aktuell ozonhalt, konstaterar vi att fibrinogenhalten ökar med stigande ozonvärde. Sambandet är statistiskt säkerställt vid en analys med hänsyn till individfaktorer av betydelse för fibrinogenhalten. En ökning av ozonhalten med 50 μg/m3 (från 10:e till 90:e percentilen) leder till en i genomsnitt 3 % ökad fibrinogenhalt

    The influence of different parameters on the mercerisation of cellulose for viscose production

    No full text
    A quantitative analysis of degree of transformation from a softwood sulphite dissolving pulp to alkalised material and the yield of this transformation as a function of the simultaneous variation of the NaOH concentration, denoted [NaOH], reaction time and temperature was performed. Samples were analysed with Raman spectroscopy in combination with multivariate data analysis and these results were confirmed by X-ray diffraction. Gravimetry was used to measure the yield. The resulting data were related to the processing conditions in a Partial Least Square regression model, which made it possible to explore the relevance of the three studied variables on the responses. The detailed predictions for the interactive effects of the measured parameters made it possible to determine optimal conditions for both yield and degree of transformation in viscose manufacturing. The yield was positively correlated to the temperature from room temperature up to 45 A degrees C, after which the relation was negative. Temperature was found to be important for the degree of transformation and yield. The time to reach a certain degree of transformation (i.e. mercerisation) depended on both temperature and [NaOH]. At low temperatures and high [NaOH], mercerisation was instantaneous. It was concluded that the size of fibre particles (mesh range 0.25-1 mm) had no influence on degree of transformation in viscose processing conditions, apparently due to the quick reaction with the excess of NaOH.bio4Energ

    Activation of dissolving cellulose pulp at low water content

    No full text
    Mercerisation of cellulose by alkali treatment is the first step in modifying natural cellulose fibres into many commercial cellulosic materials. During treatment, the fiber transforms into a reactive and highly swollen material called alkali cellulose (Na-Cell). In case NaOH is washed out of the cellulose structure, Na-Cell turn into Cellulose II upon drying (Langan et al. 2001).   The aim of the present study was to gain a better understanding of the mercerisation of dissolving cellulose pulp at low water content. This has been done by spraying NaOH onto milled cellulose in a kneader, then washing the cellulose to neutrality to stop the reaction. After drying the transformation degree to cellulose II was analysed. The experiments include variation of temperature (30-60°C), reaction time (5 and 25 min), [NaOH] (45-55%), and NaOH:Cellulose molar ratio (0.8- 1.8). A combination of NIR Raman imaging and multivariate data analysis have been used to study the transformation degree.   To the authors’ knowledge, this is the first time the influence of NaOH: Cellulose molar ratio on the mercerisation process has been studied in a single model together with temperature, reaction time and [NaOH]. Our results indicate that increased NaOH: Cellulose molar ratio has a significant positive influence on transformation degree of dissolving cellulose pulp at low water content

    Activation of dissolving celluloses pulp for viscose and cellulose ether production

    No full text
    Mercerisation of cellulose by alkali treatment is the most common procedure used to activate natural cellulose fibres into many commercial cellulosic materials. During mercerisation, the NaOH solution enters the cellulose fibres, transforming them into a swollen and a highly reactive material called alkali cellulose (Na-Cell). In case NaOH is completely washed out of the cellulose structure, Na-Cell turns into Cellulose II upon drying. Traditionally the cellulose is mercerised by suspending it in a 15-20 % NaOH solution. The result is a high (15-25 mol/mol) NaOH: Anhydroglucose  molar ratio (r) and mercerisation in these conditions have been extensively studied. However, in modern production of cellulose ethers, the mercerisation conditions are often very different. The main reason is that any excess of water and OH--ions used during the mercerisation can later react with different chemicals in the process, thus forming unwanted by-products e.g. methanol. One way to avoid this kind of side reaction is by using low-water-content mercerisation conditions, i.e. low (r) = 0.8-1.8 mol/mol and high NaOH concentration (45-55% w/w). The traditional mercerisation is a suspension process while the cellulose during the latter process, i.e low-water-content mercerisation conditions, remains quite “dry”. Thus, although the chemical reaction principles of activation of cellulose for both viscose and cellulose ethers processes are the same, the activation conditions used are often very different. Therefore, the different dependencies of process parameters as well as any similarities between the processes are interesting. The presentation summarises the findings presented in two papers which described the influence of the different parameters on the mercerisation/activation of softwood Sulphite dissolving pulp in viscose production conditions (Albán Reyes et al. 2016) and cellulose derivatives production conditions (Albán Reyes et al.) respectively. In the individual studies this has been done by analysing the degree of transformation (DoT) of dissolving pulp to Na-cellulose (or more correctly cellulose II after washing and upon drying) as a function of simultaneous variation of [NaOH], temperature, and reaction time varied using design of experiment. Also the (r) was varied for samples mercerised at dry conditions. A combination of Raman imaging and multivariate data analysis have been used to study the DoT to Cellulose II. It was found that the mercerisation under the different conditions was dependent on different parameters. For traditional mercerisation, on the one hand, the temperature was shown to be important for the DoT and showed negative correlation with the data, while [NaOH] showed a positive correlation. On the other hand, at low-water-content mercerisation conditions the (r) was overall most important while the temperature showed no statistical importance in a Partial least squares analysis. Traditional mercerisation gave much higher DoT than the low-water-content mercerisation. Thus,  the data for low-water-content mercerisation was further examined at the different (r). The same chemistry is always expected and the different influences of the parameters seen is understood and discussed in terms of the different physical reaction mechanisms.

    Activation of dissolving cellulose pulp at low water content

    No full text
    Mercerisation of cellulose by alkali treatment is the first step in modifying natural cellulose fibres into many commercial cellulosic materials. During treatment, the fiber transforms into a reactive and highly swollen material called alkali cellulose (Na-Cell). In case NaOH is washed out of the cellulose structure, Na-Cell turn into Cellulose II upon drying (Langan et al. 2001).   The aim of the present study was to gain a better understanding of the mercerisation of dissolving cellulose pulp at low water content. This has been done by spraying NaOH onto milled cellulose in a kneader, then washing the cellulose to neutrality to stop the reaction. After drying the transformation degree to cellulose II was analysed. The experiments include variation of temperature (30-60°C), reaction time (5 and 25 min), [NaOH] (45-55%), and NaOH:Cellulose molar ratio (0.8- 1.8). A combination of NIR Raman imaging and multivariate data analysis have been used to study the transformation degree.   To the authors’ knowledge, this is the first time the influence of NaOH: Cellulose molar ratio on the mercerisation process has been studied in a single model together with temperature, reaction time and [NaOH]. Our results indicate that increased NaOH: Cellulose molar ratio has a significant positive influence on transformation degree of dissolving cellulose pulp at low water content

    Activation of dissolving celluloses pulp for viscose and cellulose ether production

    No full text
    Mercerisation of cellulose by alkali treatment is the most common procedure used to activate natural cellulose fibres into many commercial cellulosic materials. During mercerisation, the NaOH solution enters the cellulose fibres, transforming them into a swollen and a highly reactive material called alkali cellulose (Na-Cell). In case NaOH is completely washed out of the cellulose structure, Na-Cell turns into Cellulose II upon drying. Traditionally the cellulose is mercerised by suspending it in a 15-20 % NaOH solution. The result is a high (15-25 mol/mol) NaOH: Anhydroglucose  molar ratio (r) and mercerisation in these conditions have been extensively studied. However, in modern production of cellulose ethers, the mercerisation conditions are often very different. The main reason is that any excess of water and OH--ions used during the mercerisation can later react with different chemicals in the process, thus forming unwanted by-products e.g. methanol. One way to avoid this kind of side reaction is by using low-water-content mercerisation conditions, i.e. low (r) = 0.8-1.8 mol/mol and high NaOH concentration (45-55% w/w). The traditional mercerisation is a suspension process while the cellulose during the latter process, i.e low-water-content mercerisation conditions, remains quite “dry”. Thus, although the chemical reaction principles of activation of cellulose for both viscose and cellulose ethers processes are the same, the activation conditions used are often very different. Therefore, the different dependencies of process parameters as well as any similarities between the processes are interesting. The presentation summarises the findings presented in two papers which described the influence of the different parameters on the mercerisation/activation of softwood Sulphite dissolving pulp in viscose production conditions (Albán Reyes et al. 2016) and cellulose derivatives production conditions (Albán Reyes et al.) respectively. In the individual studies this has been done by analysing the degree of transformation (DoT) of dissolving pulp to Na-cellulose (or more correctly cellulose II after washing and upon drying) as a function of simultaneous variation of [NaOH], temperature, and reaction time varied using design of experiment. Also the (r) was varied for samples mercerised at dry conditions. A combination of Raman imaging and multivariate data analysis have been used to study the DoT to Cellulose II. It was found that the mercerisation under the different conditions was dependent on different parameters. For traditional mercerisation, on the one hand, the temperature was shown to be important for the DoT and showed negative correlation with the data, while [NaOH] showed a positive correlation. On the other hand, at low-water-content mercerisation conditions the (r) was overall most important while the temperature showed no statistical importance in a Partial least squares analysis. Traditional mercerisation gave much higher DoT than the low-water-content mercerisation. Thus,  the data for low-water-content mercerisation was further examined at the different (r). The same chemistry is always expected and the different influences of the parameters seen is understood and discussed in terms of the different physical reaction mechanisms.

    Activation of dissolving celluloses pulp for viscose and cellulose ether production

    No full text
    Mercerisation of cellulose by alkali treatment is the most common procedure used to activate natural cellulose fibres into many commercial cellulosic materials. During mercerisation, the NaOH solution enters the cellulose fibres, transforming them into a swollen and a highly reactive material called alkali cellulose (Na-Cell). In case NaOH is completely washed out of the cellulose structure, Na-Cell turns into Cellulose II upon drying. Traditionally the cellulose is mercerised by suspending it in a 15-20 % NaOH solution. The result is a high (15-25 mol/mol) NaOH: Anhydroglucose  molar ratio (r) and mercerisation in these conditions have been extensively studied. However, in modern production of cellulose ethers, the mercerisation conditions are often very different. The main reason is that any excess of water and OH--ions used during the mercerisation can later react with different chemicals in the process, thus forming unwanted by-products e.g. methanol. One way to avoid this kind of side reaction is by using low-water-content mercerisation conditions, i.e. low (r) = 0.8-1.8 mol/mol and high NaOH concentration (45-55% w/w). The traditional mercerisation is a suspension process while the cellulose during the latter process, i.e low-water-content mercerisation conditions, remains quite “dry”. Thus, although the chemical reaction principles of activation of cellulose for both viscose and cellulose ethers processes are the same, the activation conditions used are often very different. Therefore, the different dependencies of process parameters as well as any similarities between the processes are interesting. The presentation summarises the findings presented in two papers which described the influence of the different parameters on the mercerisation/activation of softwood Sulphite dissolving pulp in viscose production conditions (Albán Reyes et al. 2016) and cellulose derivatives production conditions (Albán Reyes et al.) respectively. In the individual studies this has been done by analysing the degree of transformation (DoT) of dissolving pulp to Na-cellulose (or more correctly cellulose II after washing and upon drying) as a function of simultaneous variation of [NaOH], temperature, and reaction time varied using design of experiment. Also the (r) was varied for samples mercerised at dry conditions. A combination of Raman imaging and multivariate data analysis have been used to study the DoT to Cellulose II. It was found that the mercerisation under the different conditions was dependent on different parameters. For traditional mercerisation, on the one hand, the temperature was shown to be important for the DoT and showed negative correlation with the data, while [NaOH] showed a positive correlation. On the other hand, at low-water-content mercerisation conditions the (r) was overall most important while the temperature showed no statistical importance in a Partial least squares analysis. Traditional mercerisation gave much higher DoT than the low-water-content mercerisation. Thus,  the data for low-water-content mercerisation was further examined at the different (r). The same chemistry is always expected and the different influences of the parameters seen is understood and discussed in terms of the different physical reaction mechanisms.
    corecore