2,494 research outputs found

    LISA observations of massive black hole mergers: event rates and issues in waveform modelling

    Full text link
    The observability of gravitational waves from supermassive and intermediate-mass black holes by the forecoming Laser Interferometer Space Antenna (LISA), and the physics we can learn from the observations, will depend on two basic factors: the event rates for massive black hole mergers occurring in the LISA best sensitivity window, and our theoretical knowledge of the gravitational waveforms. We first provide a concise review of the literature on LISA event rates for massive black hole mergers, as predicted by different formation scenarios. Then we discuss what (in our view) are the most urgent issues to address in terms of waveform modelling. For massive black hole binary inspiral these include spin precession, eccentricity, the effect of high-order Post-Newtonian terms in the amplitude and phase, and an accurate prediction of the transition from inspiral to plunge. For black hole ringdown, numerical relativity will ultimately be required to determine the relative quasinormal mode excitation, and to reduce the dimensionality of the template space in matched filtering.Comment: 14 pages, 2 figures. Added section with conclusions and outlook. Matches version to appear in the proceedings of 10th Annual Gravitational Wave Data Analysis Workshop (GWDAW 10), Brownsville, Texas, 14-17 Dec 200

    Comment on `Hawking radiation from fluctuating black holes'

    Full text link
    Takahashi & Soda (2010 Class. Quantum Grav. v27 p175008, arXiv:1005.0286) have recently considered the effect (at lowest non-trivial order) of dynamical, quantized gravitational fluctuations on the spectrum of scalar Hawking radiation from a collapsing Schwarzschild black hole. However, due to an unfortunate choice of gauge, the dominant (even divergent) contribution to the coefficient of the spectrum correction that they identify is a pure gauge artifact. I summarize the logic of their calculation, comment on the divergences encountered in its course and comment on how they could be eliminated, and thus the calculation be completed.Comment: 12 pages, 1 fig; feynmp, amsref

    Double Compact Objects III: Gravitational Wave Detection Rates

    Get PDF
    The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)---i.e., neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) binary systems---is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown (IMR) gravitational waveform models in our signal-to-noise ratio calculations. We find that: (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS-NS and BH-NS systems, but it boosts rates by a factor 1.5\sim 1.5 for BH-BH systems; (2) in almost all of our models BH-BH systems yield by far the largest rates, followed by NS-NS and BH-NS systems, respectively, and (3) a majority of the detectable BH-BH systems were formed in the early Universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.Comment: published in ApJ, 19 pages, 11 figure

    Quasinormal modes of Kerr-Newman black holes: coupling of electromagnetic and gravitational perturbations

    Full text link
    We compute numerically the quasinormal modes of Kerr-Newman black holes in the scalar case, for which the perturbation equations are separable. Then we study different approximations to decouple electromagnetic and gravitational perturbations of the Kerr-Newman metric, computing the corresponding quasinormal modes. Our results suggest that the Teukolsky-like equation derived by Dudley and Finley gives a good approximation to the dynamics of a rotating charged black hole for Q<M/2. Though insufficient to deal with Kerr-Newman based models of elementary particles, the Dudley-Finley equation should be adequate for astrophysical applications.Comment: 13 pages, 3 figures. Minor changes to match version accepted in Phys. Rev.

    Periodic solutions for a class of nonlinear partial differential equations in higher dimension

    Full text link
    We prove the existence of periodic solutions in a class of nonlinear partial differential equations, including the nonlinear Schroedinger equation, the nonlinear wave equation, and the nonlinear beam equation, in higher dimension. Our result covers cases where the bifurcation equation is infinite-dimensional, such as the nonlinear Schroedinger equation with zero mass, for which solutions which at leading order are wave packets are shown to exist.Comment: 34 page

    Gravitational signals emitted by a point mass orbiting a neutron star: a perturbative approach

    Full text link
    We compute the energy spectra of the gravitational signals emitted when a pointlike mass moves on a closed orbit around a non rotating neutron star, inducing a perturbation of its gravitational field and its internal structure. The Einstein equations and the hydrodynamical equations are perturbed and numerically integrated in the frequency domain. The results are compared with the energy spectra computed by the quadrupole formalism which assumes that both masses are pointlike, and accounts only for the radiation emitted because the orbital motion produces a time dependent quadrupole moment. The results of our perturbative approach show that, in general, the quadrupole formalism overestimates the amount of emitted radiation, especially when the two masses are close. However, if the pointlike mass is allowed to move on an orbit so tight that the keplerian orbital frequency resonates with the frequency of the fundamental quasi-normal mode of the star (2w_K=w_f), this mode can be excited and the emitted radiation can be considerably larger than that computed by the quadrupole approach.Comment: 36 pages, 7 figures, submimtted to Phys. Rev.

    Time quasi-periodic gravity water waves in finite depth

    Get PDF
    We prove the existence and the linear stability of Cantor families of small amplitude time quasi-periodic standing water wave solutions\u2014namely periodic and even in the space variable x\u2014of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure. This is a small divisor problem. The main difficulties are the fully nonlinear nature of the gravity water waves equations\u2014the highest order x-derivative appears in the nonlinear term but not in the linearization at the origin\u2014and the fact that the linear frequencies grow just in a sublinear way at infinity. We overcome these problems by first reducing the linearized operators, obtained at each approximate quasi-periodic solution along a Nash\u2013Moser iterative scheme, to constant coefficients up to smoothing operators, using pseudo-differential changes of variables that are quasi-periodic in time. Then we apply a KAM reducibility scheme which requires very weak Melnikov non-resonance conditions which lose derivatives both in time and space. Despite the fact that the depth parameter moves the linear frequencies by just exponentially small quantities, we are able to verify such non-resonance conditions for most values of the depth, extending degenerate KAM theory

    Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes

    Full text link
    We establish a Bohr-Sommerfeld type condition for quasi-normal modes of a slowly rotating Kerr-de Sitter black hole, providing their full asymptotic description in any strip of fixed width. In particular, we observe a Zeeman-like splitting of the high multiplicity modes at a=0 (Schwarzschild-de Sitter), once spherical symmetry is broken. The numerical results presented in Appendix B show that the asymptotics are in fact accurate at very low energies and agree with the numerical results established by other methods in the physics literature. We also prove that solutions of the wave equation can be asymptotically expanded in terms of quasi-normal modes; this confirms the validity of the interpretation of their real parts as frequencies of oscillations, and imaginary parts as decay rates of gravitational waves.Comment: 66 pages, 6 figures; journal version (to appear in Annales Henri Poincar\'e

    Measurement of forward photon production cross-section in proton-proton collisions at s\sqrt{s} = 13 TeV with the LHCf detector

    Full text link
    In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of η>10.94\eta\,>\,10.94 and 8.99>η>8.818.99\,>\,\eta\,>\,8.81, measured by the LHCf experiment with proton--proton collisions at s\sqrt{s} = 13 TeV. The results from the analysis of 0.191 nb1\mathrm{nb^{-1}} of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.Comment: 21 pages, 4 figure
    corecore