567 research outputs found
Breakup of the Fermi surface near the Mott transition in low-dimensional systems
We investigate the Mott transition in weakly-coupled one-dimensional (1d)
fermionic chains. Using a generalization of Dynamic Mean Field Theory, we show
that the Mott gap is suppressed at some critical hopping . The
transition from the 1d insulator to a 2d metal proceeds through an intermediate
phase where the Fermi surface is broken into electron and hole pockets. The
quasiparticle spectral weight is strongly anisotropic along the Fermi surface,
both in the intermediate and metallic phases. We argue that such pockets would
look like `arcs' in photoemission experiments.Comment: REVTeX 4, 5 pages, 4 EPS figures. References added; problem with
figure 4 fixed; typos correcte
Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO/SrTiO interface
We investigate the 2-dimensional Fermi surface of high-mobility
LaAlO/SrTiO interfaces using Shubnikov-de Haas oscillations. Our
analysis of the oscillation pattern underscores the key role played by the
Rashba spin-orbit interaction brought about by the breaking of inversion
symmetry, as well as the dominant contribution of the heavy /
orbitals on electrical transport. We furthermore bring into light the complex
evolution of the oscillations with the carrier density, which is tuned by the
field effect
State of the Sub-surface Microstructure of Carbides strengthened cast Superalloys after High Temperature Oxidation -Use of Thermodynamic Modelling for a better Understanding
International audienceSeveral cast strengthened superalloys, Ni base and Co base, were exposed to high temperature oxidation for long times and metallographically examined. Different phenomena occurred in the sub-surface microstructure, depending on both alloy and temperature. Thermodynamic modelling was used to know what it happened for carbon during oxidation, then to explain the observed microstructural changes. It appears that carbon atoms either quit the alloy probably after its oxidation into gases, or on the contrary go deeper into the bulk where they promote the precipitation of new carbides by solid state transformation. Thereafter, thermodynamic modelling allowed to know the new local refractoriness of the zones affected by oxidation, then to appreciate the new mechanical properties in the sub-surface
Hall effect in strongly correlated low dimensional systems
We investigate the Hall effect in a quasi one-dimensional system made of
weakly coupled Luttinger Liquids at half filling. Using a memory function
approach, we compute the Hall coefficient as a function of temperature and
frequency in the presence of umklapp scattering. We find a power-law correction
to the free-fermion value (band value), with an exponent depending on the
Luttinger parameter . At high enough temperature or frequency the
Hall coefficient approaches the band value.Comment: 7 pages, 3 figure
Influence of the Microstructural Texture of Cast Superalloys on their High-Temperature Oxidation Behaviour
International audienceThe high-temperature oxidation behaviours of Ni base and Co base cast superalloys were studied to determine the effect of different grain sizes and different surface dendritic orientations. These microstructural characteristics were obtained by varying solidification rate and cutting orientation with regard to the external surface. Thermogravimetry tests were run at 1000 and 1100°C and parabolic oxidation constants were considered. It appears that oxidation is faster for fine microstructures than for coarser ones for Ni or Co alloys including tungsten in their chemical composition, while it is the contrary when W is not present. When the sample surface is mainly parallel to the dendritic network, the oxidation rate is greater than for a surface perpendicular to dendrites, for the studied Ni alloy. The same phenomenon is observed for the studied Co base alloy at 1100°C but the order is inverted at 1000°C. These different behaviours can be explained by the grain boundary densities and orientations obtained on surface, since they can influence the diffusion of species involved in the oxidation phenomena. It is also possible that the characteristics of the chromia scale, such as grain size and general quality, depend on the microstructural texture of the alloy
Real space finite difference method for conductance calculations
We present a general method for calculating coherent electronic transport in
quantum wires and tunnel junctions. It is based upon a real space high order
finite difference representation of the single particle Hamiltonian and wave
functions. Landauer's formula is used to express the conductance as a
scattering problem. Dividing space into a scattering region and left and right
ideal electrode regions, this problem is solved by wave function matching (WFM)
in the boundary zones connecting these regions. The method is tested on a model
tunnel junction and applied to sodium atomic wires. In particular, we show that
using a high order finite difference approximation of the kinetic energy
operator leads to a high accuracy at moderate computational costs.Comment: 13 pages, 10 figure
Schottky barrier heights at polar metal/semiconductor interfaces
Using a first-principle pseudopotential approach, we have investigated the
Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100)
junctions, and their dependence on the semiconductor chemical composition and
surface termination. A model based on linear-response theory is developed,
which provides a simple, yet accurate description of the barrier-height
variations with the chemical composition of the semiconductor. The larger
barrier values found for the anion- than for the cation-terminated surfaces are
explained in terms of the screened charge of the polar semiconductor surface
and its image charge at the metal surface. Atomic scale computations show how
the classical image charge concept, valid for charges placed at large distances
from the metal, extends to distances shorter than the decay length of the
metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure
Collapse of the Mott gap and emergence of a nodal liquid in lightly doped SrIrO
Superconductivity in underdoped cuprates emerges from an unusual electronic
state characterised by nodal quasiparticles and an antinodal pseudogap. The
relation between this state and superconductivity is intensely studied but
remains controversial. The discrimination between competing theoretical models
is hindered by a lack of electronic structure data from related doped Mott
insulators. Here we report the doping evolution of the Heisenberg
antiferromagnet SrIrO, a close analogue to underdoped cuprates. We
demonstrate that metallicity emerges from a rapid collapse of the Mott gap with
doping, resulting in lens-like Fermi contours rather than disconnected Fermi
arcs as observed in cuprates. Intriguingly though, the emerging electron liquid
shows nodal quasiparticles with an antinodal pseudogap and thus bares strong
similarities with underdoped cuprates. We conclude that anisotropic pseudogaps
are a generic property of two-dimensional doped Mott insulators rather than a
unique hallmark of cuprate high-temperature superconductivity
The effects of interface morphology on Schottky barrier heights: a case study on Al/GaAs(001)
The problem of Fermi-level pinning at semiconductor-metal contacts is
readdressed starting from first-principles calculations for Al/GaAs. We give
quantitative evidence that the Schottky barrier height is very little affected
by any structural distortions on the metal side---including elongations of the
metal-semiconductor bond (i.e. interface strain)---whereas it strongly depends
on the interface structure on the semiconductor side. A rationale for these
findings is given in terms of the interface dipole generated by the ionic
effective charges.Comment: 5 pages, latex file, 2 postscript figures automatically include
- …