337 research outputs found
Experimental velocity fields and forces for a cylinder penetrating into a granular medium
We present here a detailed granular flow characterization together with force
measurements for the quasi-bidimensional situation of a horizontal cylinder
penetrating vertically at a constant velocity in dry granular matter between
two parallel glass walls. In the velocity range studied here, the drag force on
the cylinder does not depend on the velocity V_0 and is mainly proportional to
the cylinder diameter d. Whereas the force on the cylinder increases with its
penetration depth, the granular velocity profile around the cylinder is found
stationary with fluctuations around a mean value leading to the granular
temperature profile. Both mean velocity profile and temperature profile exhibit
strong localization near the cylinder. The mean flow perturbation induced by
the cylinder decreases exponentially away from the cylinder on a characteristic
length \lambda, that is mainly governed by the cylinder diameter for large
enough cylinder/grain size ratio d/d_g: \lambda ~ d/4 + 2d_g. The granular
temperature exhibits a constant plateau value T_0 in a thin layer close to the
cylinder of extension \delta_{T_0} ~ \lambda/2 and decays exponentially far
away with a characteristic length \lambda_T of a few grain diameters (\lambda_T
~ 3d_g). The granular temperature plateau T_0 that scales as (V_0^2 d_g/d) is
created by the flow itself from the balance between the "granular heat"
production by the shear rate V_0/\lambda over \delta_{T_0} close to the
cylinder and the granular dissipation far away
Influence of humidity on granular packings with moving walls
A significant dependence on the relative humidity H for the apparent mass
(Mapp) measured at the bottom of a granular packing inside a vertical tube in
relative motion is demonstrated experimentally. While the predictions of
Janssen's model are verified for all values of H investigated (25%< H <80%),
Mapp increases with time towards a limiting value at high relative humidities
(H>60%) but remains constant at lower ones (H=25%). The corresponding Janssen
length is nearly independent of the tube velocity for H>60% but decreases
markedly for H=25%. Other differences are observed on the motion of individual
beads in the packing. For H=25%, they are almost motionless while the mean
particle fraction of the packing remains constant; for H>60% the bead motion is
much more significant and the mean particle fraction decreases. The dependence
of these results on the bead diameter and their interpretation in terms of the
influence of capillary forces are discussed.Comment: 6 pages, 6 figure
Granular packings with moving side walls
The effects of movement of the side walls of a confined granular packing are
studied by discrete element, molecular dynamics simulations. The dynamical
evolution of the stress is studied as a function of wall movement both in the
direction of gravity as well as opposite to it. For all wall velocities
explored, the stress in the final state of the system after wall movement is
fundamentally different from the original state obtained by pouring particles
into the container and letting them settle under the influence of gravity. The
original packing possesses a hydrostatic-like region at the top of the
container which crosses over to a depth-independent stress. As the walls are
moved in the direction opposite to gravity, the saturation stress first reaches
a minimum value independent of the wall velocity, then increases to a
steady-state value dependent on the wall-velocity. After wall movement ceases
and the packing reaches equilibrium, the stress profile fits the classic
Janssen form for high wall velocities, while it has some deviations for low
wall velocities. The wall movement greatly increases the number of
particle-wall and particle-particle forces at the Coulomb criterion. Varying
the wall velocity has only small effects on the particle structure of the final
packing so long as the walls travel a similar distance.Comment: 11 pages, 10 figures, some figures in colo
Slow dynamics and aging of a confined granular flow
We present experimental results on slow flow properties of a granular
assembly confined in a vertical column and driven upwards at a constant
velocity V. For monodisperse assemblies this study evidences at low velocities
() a stiffening behaviour i.e. the stress necessary to obtain
a steady sate velocity increases roughly logarithmically with velocity. On the
other hand, at very low driving velocity (), we evidence a
discontinuous and hysteretic transition to a stick-slip regime characterized by
a strong divergence of the maximal blockage force when the velocity goes to
zero. We show that all this phenomenology is strongly influenced by surrounding
humidity. We also present a tentative to establish a link between the granular
rheology and the solid friction forces between the wall and the grains. We base
our discussions on a simple theoretical model and independent grain/wall
tribology measurements. We also use finite elements numerical simulations to
confront experimental results to isotropic elasticity. A second system made of
polydisperse assemblies of glass beads is investigated. We emphasize the onset
of a new dynamical behavior, i.e. the large distribution of blockage forces
evidenced in the stick-slip regime
- …