8 research outputs found

    Spontaneous and induced dynamic correlations in glass-formers II: Model calculations and comparison to numerical simulations

    Get PDF
    We study in detail the predictions of various theoretical approaches, in particular mode-coupling theory (MCT) and kinetically constrained models (KCMs), concerning the time, temperature, and wavevector dependence of multi-point correlation functions that quantify the strength of both induced and spontaneous dynamical fluctuations. We also discuss the precise predictions of MCT concerning the statistical ensemble and microscopic dynamics dependence of these multi-point correlation functions. These predictions are compared to simulations of model fragile and strong glass-forming liquids. Overall, MCT fares quite well in the fragile case, in particular explaining the observed crucial role of the statistical ensemble and microscopic dynamics, while MCT predictions do not seem to hold in the strong case. KCMs provide a simplified framework for understanding how these multi-point correlation functions may encode dynamic correlations in glassy materials. However, our analysis highlights important unresolved questions concerning the application of KCMs to supercooled liquids.Comment: 23 pages, 12 fig

    Critical fluctuations and breakdown of Stokes-Einstein relation in the Mode-Coupling Theory of glasses

    Full text link
    We argue that the critical dynamical fluctuations predicted by the mode-coupling theory (MCT) of glasses provide a natural mechanism to explain the breakdown of the Stokes-Einstein relation. This breakdown, observed numerically and experimentally in a region where MCT should hold, is one of the major difficulty of the theory, for which we propose a natural resolution based on the recent interpretation of the MCT transition as a bona fide critical point with a diverging length scale. We also show that the upper critical dimension of MCT is d_c=8.Comment: Proceedings of the workshop on non-equilibrium phenomena in supercooled fluids, glasses and amorphous materials (17-22 September, 2006, Pisa

    Non-linear susceptibilities of spherical models

    Full text link
    The static and dynamic susceptibilities for a general class of mean field random orthogonal spherical spin glass models are studied. We show how the static and dynamical properties of the linear and nonlinear susceptibilities depend on the behaviour of the density of states of the two body interaction matrix in the neighbourhood of the largest eigenvalue. Our results are compared with experimental results and also with those of the droplet theory of spin glasses.Comment: 20 pages, 2 fig
    corecore