2,751 research outputs found
Characterizing dynamic length scales in glass-forming liquids
Reply to Comment by Flenner and Szamel on our paper in Nature Physics 8, 164
(2012).Comment: 1 pag
A random walk description of the heterogeneous glassy dynamics of attracting colloids
We study the heterogeneous dynamics of attractive colloidal particles close
to the gel transition using confocal microscopy experiments combined with a
theoretical statistical analysis. We focus on single particle dynamics and show
that the self part of the van Hove distribution function is not the Gaussian
expected for a Fickian process, but that it reflects instead the existence, at
any given time, of colloids with widely different mobilities. Our confocal
microscopy measurements can be described well by a simple analytical model
based on a conventional continuous time random walk picture, as already found
in several other glassy materials. In particular, the theory successfully
accounts for the presence of broad tails in the van Hove distributions that
exhibit exponential, rather than Gaussian, decay at large distance.Comment: 13 pages, 5 figs. Submitted to special issue "Classical and Quantum
Glasses" of J. Phys.: Condens. Matter; v2: response to refere
Field-induced magnetic behavior in quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8: A single-crystal neutron diffraction study
BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system
that can be described in terms of Tomonaga-Luttinger liquid physics. This is
explored in the present study where the magnetic field-temperature phase
diagram is thoroughly established up to 12 T using single-crystal neutron
diffraction. The transition from the N\'eel phase to the incommensurate
longitudinal spin density wave (LSDW) phase through a first-order transition,
as well as the critical exponents associated with the paramagnetic to ordered
phase transitions, and the magnetic order both in the N\'eel and in the LSDW
phase are determined, thus providing a stringent test for the theory.Comment: 17 pages with 15 figure
Real space application of the mean-field description of spin glass dynamics
The out of equilibrium dynamics of finite dimensional spin glasses is
considered from a point of view going beyond the standard `mean-field theory'
versus `droplet picture' debate of the last decades. The main predictions of
both theories concerning the spin glass dynamics are discussed. It is shown, in
particular, that predictions originating from mean-field ideas concerning the
violations of the fluctuation-dissipation theorem apply quantitatively,
provided one properly takes into account the role of the spin glass coherence
length which plays a central role in the droplet picture. Dynamics in a uniform
magnetic field is also briefly discussed.Comment: 4 pages, 4 eps figures. v2: published versio
Intruder mobility in a vibrated granular packing
We study experimentally the dynamics of a dense intruder sinking under
gravity inside a vibrated 2D granular packing. The surrounding flow patterns
are characterized and the falling trajectories are interpreted in terms of an
effectivive friction coefficient related to the intruder mean descent velocity
(flow rules). At higher confining pressures i.e. close to jamming, a transition
to intermittent dynamics is evidenced and displays anomalous "on-off" blockade
statistics. A systematic analysis of the flow rules, obtained for different
intruder sizes, either in the flowing regime or averaged over the flowing and
blockade regimes, strongly suggest the existence of non-local properties for
the vibrated packing rheology.
Time and length scales in spin glasses
We discuss the slow, nonequilibrium, dynamics of spin glasses in their glassy
phase. We briefly review the present theoretical understanding of the
spectacular phenomena observed in experiments and describe new numerical
results obtained in the first large-scale simulation of the nonequilibrium
dynamics of the three dimensional Heisenberg spin glass.Comment: Paper presented at "Highly Frustrated Magnetism 2003", Grenoble,
August 200
Surfing on a critical line: Rejuvenation without chaos, Memory without a hierarchical phase space
The dynamic behaviour of glassy materials displays strong nonequilibrium
effects, such as ageing in simple protocols, memory, rejuvenation and Kovacs
effects in more elaborated experiments. We show that this phenomenology may be
easily understood in the context of the nonequilibrium critical dynamics of
non-disordered systems, the main ingredient being the existence of an infinite
equilibrium correlation length. As an example, we analytically investigate the
behaviour of the 2D XY model submitted to temperature protocols similar to
experiments. This shows that typical glassy effects may be obtained by `surfing
on a critical line' without invoking the concept of temperature chaos nor the
existence of a hierarchical phase space, as opposed to previous theoretical
approaches. The relevance of this phenomenological approach to glassy dynamics
is finally discussed.Comment: Version to be published in Europhysics Letters. Slight modifs + ref
to "surfing" adde
- …
