3,013 research outputs found

    Can the jamming transition be described using equilibrium statistical mechanics?

    Full text link
    When materials such as foams or emulsions are compressed, they display solid behaviour above the so-called `jamming' transition. Because compression is done out-of-equilibrium in the absence of thermal fluctuations, jamming appears as a new kind of a nonequilibrium phase transition. In this proceeding paper, we suggest that tools from equilibrium statistical mechanics can in fact be used to describe many specific features of the jamming transition. Our strategy is to introduce thermal fluctuations and use statistical mechanics to describe the complex phase behaviour of systems of soft repulsive particles, before sending temperature to zero at the end of the calculation. We show that currently available implementations of standard tools such as integral equations, mode-coupling theory, or replica calculations all break down at low temperature and large density, but we suggest that new analytical schemes can be developed to provide a fully microscopic, quantitative description of the jamming transition.Comment: 8 pages, 6 figs. Talk presented at Statphys24 (July 2010, Cairns, Australia

    Equilibrium ultrastable glasses produced by random pinning

    Full text link
    Ultrastable glasses have risen to prominence due to their potentially useful material properties and the tantalizing possibility of a general method of preparation via vapor deposition. Despite the importance of this novel class of amorphous materials, numerical studies have been scarce because achieving ultrastability in atomistic simulations is an enormous challenge. Here we bypass this difficulty and establish that randomly pinning the position of a small fraction of particles inside an equilibrated supercooled liquid generates ultrastable configurations at essentially no numerical cost, while avoiding undesired structural changes due to the preparation protocol. Building on the analogy with vapor-deposited ultrastable glasses, we study the melting kinetics of these configurations following a sudden temperature jump into the liquid phase. In homogeneous geometries, we find that enhanced kinetic stability is accompanied by large scale dynamic heterogeneity, while a competition between homogeneous and heterogeneous melting is observed when a liquid boundary invades the glass at constant velocity. Our work demonstrates the feasibility of large-scale, atomistically resolved, and experimentally relevant simulations of the kinetics of ultrastable glasses.Comment: 9 pages, 5 figure

    Estimation of the normal contact stiffness for frictional interface in sticking and sliding conditions

    Get PDF
    Modeling of frictional contact systems with high accuracy needs the knowledge of several contact parameters, which are mainly related to the local phenomena at the contact interfaces and affect the complex dynamics of mechanical systems in a prominent way. This work presents a newer approach for identifying reliable values of the normal contact stiffness between surfaces in contact, in both sliding and sticking conditions. The combination of experimental tests, on a dedicated set-up, with finite element modeling, allowed for an indirect determination of the normal contact stiffness. The stiffness was found to increase with increasing contact pressure and decreasing roughness, while the evolution of surface topography and third-body rheology affected the contact stiffness when sliding

    Compressing nearly hard sphere fluids increases glass fragility

    Full text link
    We use molecular dynamics to investigate the glass transition occurring at large volume fraction, phi, and low temperature, T, in assemblies of soft repulsive particles. We find that equilibrium dynamics in the (phi, T) plane obey a form of dynamic scaling in the proximity of a critical point at T=0 and phi=phi_0, which should correspond to the ideal glass transition of hard spheres. This glass point, `point G', is distinct from athermal jamming thresholds. A remarkable consequence of scaling behaviour is that the dynamics at fixed phi passes smoothly from that of a strong glass to that of a very fragile glass as phi increases beyond phi_0. Correlations between fragility and various physical properties are explored.Comment: 5 pages, 3 figures; Version accepted at Europhys. Let

    Novel Crossover in Coupled Spin Ladders

    Get PDF
    We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-1/21/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4\mathrm{(C_7H_{10}N)_2CuBr_4}. The staggered order was previously evidenced from a continuous and symmetric splitting of 14^{14}N NMR spectral lines on lowering temperature below Tc≃330T_c\simeq 330 mK, with a saturation towards ≃150\simeq 150 mK. Unexpectedly, the split lines begin to further separate away below T∗∼100T^*\sim 100 mK while the line width and shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate T1−1T_1^{-1} measurements. A very strong suppression reflecting the ordering, T1−1∼T5.5T_1^{-1}\sim T^{5.5}, observed above T∗T^*, is replaced by T1−1∼TT_1^{-1}\sim T below T∗T^*. These original NMR features are indicative of unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.Comment: 5 pages, 3 figure

    Crossovers in the dynamics of supercooled liquids probed by an amorphous wall

    Full text link
    We study the relaxation dynamics of a binary Lennard-Jones liquid in the presence of an amorphous wall generated from equilibrium particle configurations. In qualitative agreement with the results presented in Nature Phys. {\bf 8}, 164 (2012) for a liquid of harmonic spheres, we find that our binary mixture shows a saturation of the dynamical length scale close to the mode-coupling temperature TcT_c. Furthermore we show that, due to the broken symmetry imposed by the wall, signatures of an additional change in dynamics become apparent at a temperature well above TcT_c. We provide evidence that this modification in the relaxation dynamics occurs at a recently proposed dynamical crossover temperature Ts>TcT_s > T_c, which is related to the breakdown of the Stokes-Einstein relation. We find that this dynamical crossover at TsT_s is also observed for a system of harmonic spheres as well as a WCA liquid, showing that it may be a general feature of glass-forming systems.Comment: 10 pages, 8 figure

    NMR evidence for the persistence of spin-superlattice above the 1/8 magnetization plateau in SrCu2(BO3)2

    Full text link
    We present 11B NMR studies of the 2D frustrated dimer spin system SrCu2(BO3)2 in the field range 27-31 T covering the upper phase boundary of the 1/8 magnetization plateau, identified at 28.4 T. Our data provide a clear evidence that above 28.4 T the spin-superlattice of the 1/8 plateau is modified but does not melt even though the magnetization increases. Although this is precisely what is expected for a supersolid phase, the microscopic nature of this new phase is much more complex. We discuss the field-temperature phase diagram on the basis of our NMR data.Comment: 5 pages, 4 figures, published versio

    Brambilla et al. Reply to a Comment by J. Reinhardt et al. on "Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition"

    Full text link
    G. Brambilla et al. Reply to a Comment by J. Reinhardt et al. questioning the existence of equilibrium dynamics above the critical volume fraction of colloidal hard spheres predicted by mode coupling theory.Comment: To appear in Phys. Rev. Lett. Reply to a Comment by J. Reinhardt et al. (see arXiv:1010.2891), which questions the existence of equilibrium dynamics above the critical volume fraction of glassy colloidal hard spheres predicted by mode coupling theor
    • …
    corecore