2,156 research outputs found

    Alpha Channeling with High-field Launch of Lower Hybrid Waves

    Full text link
    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.Comment: 7 pages, 7 figure

    Multi-Dimensional Ideology in the Multi-Member District: An Analysis of the Arizona Legislature

    Get PDF
    http://www.truman.missouri.edu/ipp/publications/index.asp?ViewBy=DateAmerican state legislatures provide considerable institutional variation for testing theories of legislative representation, and one such feature is the multi-member district system (MMD). Whereas the U.S. House and most American state legislatures use the single member district system (SMD) in which a single legislator represents one geographic district, several state legislatures still use a system in which more than one legislator is elected from the same district in the same election. Although there can be considerable variation in the rules for such MMDs, one structure common to many state legislatures is a situation in which multiplecandidates run against each other for two seats from one district, and the two receiving the most votes are elected. Clearly, the electoral game is quite different in a situation in which a candidate is likely to be running against not only members of other parties but also another candidate of the same party. The incentives inherent in such a system are quite different than those for a legislator in an SMD, and it likely that such incentives change legislative representation in a number of ways.Includes bibliographical reference

    The Peak Brightness and Spatial Distribution of AGB Stars Near the Nucleus of M32

    Get PDF
    The bright stellar content near the center of the Local Group elliptical galaxy M32 is investigated with 0.12 arcsec FWHM H and K images obtained with the Gemini Mauna Kea telescope. Stars with K = 15.5, which are likely evolving near the tip of the asymptotic giant branch (AGB), are resolved to within 2 arcsec of the nucleus, and it is concluded that the peak stellar brightness near the center of M32 is similar to that in the outer regions of the galaxy. Moreover, the projected density of bright AGB stars follows the visible light profile to within 2 arcsec of the nucleus, indicating that the brightest stars are well mixed throughout the galaxy. Thus, there is no evidence for an age gradient, and the radial variations in spectroscopic indices and ultraviolet colors that have been detected previously must be due to metallicity and/or some other parameter. We suggest that either the bright AGB stars formed as part of a highly uniform and coherent galaxy-wide episode of star formation, or they originated in a separate system that merged with M32.Comment: 9 pages of text, 3 figures. ApJ (Letters) in pres

    Photometry and the Metallicity Distribution of the Outer Halo of M31

    Get PDF
    We have conducted a wide-field CCD-mosaic study of the resolved red-giant branch (RGB) stars of M31, in a field located 20 kpc from the nucleus along the SE minor axis. In our (I, V-I) color-magnitude diagram, RGB stars in the top three magnitudes of the M31 halo are strongly present. Photometry of a more distant control field to subtract field contamination is used to derive the `cleaned' luminosity function and metallicity distribution function (MDF) of the M31 halo field. From the color distribution of the foreground Milky Way halo stars, we find a reddening E(V-I)= 0.10 +/- 0.02 for this field, and from the luminosity of the RGB tip, we determine a distance modulus (m-M)_o = 24.47 +/- 0.12 (= 783 +/- 43 kpc). The MDF is derived from interpolation within an extensive new grid of RGB models (Vandenberg et al. 2000). The MDF is dominated by a moderately high-metallicity population ([m/H]~ -0.5) found previously in more interior M31 halo/bulge fields, and is much more metal-rich than the [m/H]~ -1.5 level in the Milky Way halo. A significant (~30% - 40%, depending on AGB star contribution) metal-poor population is also present. To first order, the shape of the MDF resembles that predicted by a simple, single-component model of chemical evolution starting from primordial gas with an effective yield y=0.0055. It strongly resembles the MDF recently found for the outer halo of the giant elliptical NGC 5128 (Harris et al. 2000), though NGC 5128 has an even lower fraction of low-metallicity stars. Intriguingly, in both NGC 5128 and M31, the metallicity distribution of the globular clusters in M31 does not match the halo stars; the clusters are far more heavily weighted to metal-poor objects. We suggest similarities in the formation and early evolution of massive, spheroidal stellar systems.Comment: to appear in the Astronomical Journal; 43 pages, including 15 figure

    A Survey for Low-Surface-Brightness Galaxies Around M31. I. The Newly Discovered Dwarf Andromeda V

    Full text link
    We present images and a color-magnitude diagram for And V, a new dwarf spheroidal companion to M31 that was found using a digital filtering technique applied to 1550 square degrees of the second Palomar Sky Survey. And V resolves into stars easily in follow-up 4-m V- and I-band images, from which we deduce a distance of 810 +/- 45 kpc using the tip of the red giant branch method. Within the uncertainties, this distance is identical to the Population II distances for M31 and, combined with a projected separation of 112 kpc, provides strong support for a physical association between the two galaxies. There is no emission from And V detected in H alpha, 1.4 GHz radio continuum, or IRAS bandpasses, and there is no young population seen in the color-magnitude diagram that might suggest that And V is an irregular. Thus, the classification as a new dwarf spheroidal member of the Local Group seems secure. With an extinction-corrected central surface brightness of 25.2 V mag per square arcsec, a mean metal abundance of [Fe/H] approximately -1.5, and no evidence for upper AGB stars, And V resembles And I & III.Comment: Accepted for publication in The Astronomical Journal, November 1998 issue; 4 embedded PostScript figures, 4 JPEG figures; see http://aloe.tuc.noao.edu/jacoby/dwarfs.html for a complete full-resolution PostScript versio

    The Distance to NGC 5128 (Centaurus A)

    Full text link
    In this paper we review the various high precision methods that are now available to determine the distance to NGC 5128. These methods include: Cepheids, TRGB (tip of the red giant branch), PNLF (planetary nebula luminosity function), SBF (surface brightness fluctuations) and Long Period Variable (LPV) Mira stars. From an evaluation of these methods and their uncertainties, we derive a best-estimate distance of 3.8 +- 0.1 Mpc to NGC 5128 and find that this mean is now well supported by the current data. We also discuss the role of NGC 5128 more generally for the extragalactic distance scale as a testbed for the most direct possible comparison among these key methods.Comment: in press PASA; minor text change

    The elusive old population of the dwarf spheroidal galaxy Leo I

    Get PDF
    We report the discovery of a significant old population in the dwarf spheroidal (dSph) galaxy Leo I as a result of a wide-area search with the ESO New Technology Telescope. Studies of the stellar content of Local Group dwarf galaxies have shown the presence of an old stellar population in almost all of the dwarf spheroidals. The only exception was Leo I, which alone appeared to have delayed its initial star formation episode until just a few Gyr ago. The color-magnitude diagram of Leo I now reveals an extended horizontal branch, unambiguously indicating the presence of an old, metal-poor population in the outer regions of this galaxy. Yet we find little evidence for a stellar population gradient, at least outside R > 2' (0.16 kpc), since the old horizontal branch stars of Leo I are radially distributed as their more numerous intermediate-age helium-burning counterparts. The discovery of a definitely old population in the predominantly young dwarf spheroidal galaxy Leo I points to a sharply defined first epoch of star formation common to all of the Local Group dSph's as well as to the halo of the Milky Way.Comment: 4 pages, 3 postscript figures, uses apjfonts.sty, emulateapj.sty. Accepted for publication in ApJ Letter

    Evidence for a Young Stellar Population in NGC 5018

    Get PDF
    Two absorption line indices, Ca II and Hdelta/FeI4045, measured from high resolution spectra are used with evolutionary synthesis models to verify the presence of a young stellar population in NGC 5018. The derived age of this population is about ~2.8 Gyr with a metallicity roughly solar and it completely dominates the integrated light of the galaxy near 4000 A.Comment: 13 pages, 7 figures (figs 3-7 are color figures), to be published in the May 2000 issue of the Astrophysical Journa
    corecore