189 research outputs found

    Pathological Mineralization: The Potential of Mineralomics

    Get PDF
    Pathological mineralization has been reported countless times in the literature and is a well-known phenomenon in the medical field for its connections to a wide range of diseases, including cancer, cardiovascular, and neurodegenerative diseases. The minerals involved in calcification, however, have not been directly studied as extensively as the organic components of each of the pathologies. These have been studied in isolation and, for most of them, physicochemical properties are hitherto not fully known. In a parallel development, materials science methods such as electron microscopy, spectroscopy, thermal analysis, and others have been used in biology mainly for the study of hard tissues and biomaterials and have only recently been incorporated in the study of other biological systems. This review connects a range of soft tissue diseases, including breast cancer, age-related macular degeneration, aortic valve stenosis, kidney stone diseases, and Fahr’s syndrome, all of which have been associated with mineralization processes. Furthermore, it describes how physicochemical material characterization methods have been used to provide new information on such pathologies. Here, we focus on diseases that are associated with calcium-composed minerals to discuss how understanding the properties of these minerals can provide new insights on their origins, considering that different conditions and biological features are required for each type of mineral to be formed. We show that mineralomics, or the study of the properties and roles of minerals, can provide information which will help to improve prevention methods against pathological mineral build-up, which in the cases of most of the diseases mentioned in this review, will ultimately lead to new prevention or treatment methods for the diseases. Importantly, this review aims to highlight that chemical composition alone cannot fully support conclusions drawn on the nature of these minerals

    The living aortic valve: From molecules to function.

    Get PDF
    The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70-90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve

    Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea

    Get PDF
    Tryptophan (Trp) is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT) through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP) in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05) lower in the anorexic (11.64 ± 0.53 μg/ml, mean ± S.E.) than in the control (12.98 ± 0.37 μg/ml) groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed

    Lizard osteoderms – Morphological characterisation, biomimetic design and manufacturing based on three species

    Get PDF
    Osteoderms (OD) are mineralised dermal structures consisting mainly of calcium phosphate and collagen. The sheer diversity of OD morphologies and their distribution within the skin of lizards makes these reptiles an ideal group in which to study ODs. Nonetheless, our understanding of the structure, development, and function of lizard ODs remains limited. The specific aims of this study were: (1) to carry out a detailed morphological characterisation of ODs in three lizard species; (2) to design and manufacture biomimetic sheets of ODs corresponding to the OD arrangement in each species; and (3) to evaluate the impact resistance of the manufactured biomimetic sheets under a drop weight test. Skin samples of the anguimorphs Heloderma suspectum and Ophisaurus ventralis, and the skink Corucia zebrata were obtained from frozen lab specimens. Following a series of imaging and image characterisations, 3D biomimetic models of the ODs were developed. 3D models were then printed using additive manufacturing techniques and subjected to drop weight impact tests. The results suggest that a 3D printed compound of overlapping ODs as observed in Corucia can potentially offer a higher energy absorption by comparison with the overlapping ODs of Ophisaurus and the non-overlapping ODs of Heloderma. Compound overlapping ODs need to be further tested and explored as a biomimetic concept to increase the shock absorption capabilities of devices and structures

    Tryptophan Metabolism as Source of New Prognostic Biomarkers for FAP Patients

    Get PDF
    Familial adenomatous polyposis (FAP), a common inherited form of colorectal cancer (CRC), causes the development of hundreds to thousands of colonic adenomas in the colorectum beginning in early adolescence. In absence of a prophylactic surgery, FAP patients almost inevitably develop CRC by the age of 40 to 50. The lack of valuable prognostic biomarkers for FAP patients makes it difficult to predict when the progression from adenoma to malignant carcinoma occurs. Decreased tryptophan (TRP) plasma levels and increased indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan hydroxylase 1 (TPH1) enzymatic activities have been associated to tumour progression in CRC. In the present study, we aimed at investigating whether an altered TRP metabolism might also exist in FAP patients. Our results highlighted that plasma levels of TRP and its main catabolites are comparable between FAP patients and healthy subject. On the contrary, FAP patients presented significantly higher TRP levels with respect to high-grade adenoma (ADE) subjects and CRC patients. Obtained data lead us to evaluate IDO1 and TPH1 enzymes activity in the study groups. For both enzymes, it was possible to discriminate correctly between FAP subject and ADE/CRC patients with high sensitivities and specificities. By receiver operating characteristic (ROC) curve analysis, the cut-off values of IDO1 and TPH1 enzymatic activities associated to the presence of an active malignant transformation have been calculated as >38 and >5.5, respectively. When these cut-off values are employed, the area under the curve (AUC) is > 0.8 for both, indicating that TRP metabolism in patients with FAP may be used to monitor and predict the tumorigenic evolution

    Scanning electron microscopy for blood micro-crystals in aortic stenosis patients.

    Get PDF
    BACKGROUND: Micro-crystals of calcium phosphate have been detected on the aortic valve of patients with aortic stenosis using scanning electron microscopy. It is not known whether crystalisation is specific to heart valve tissue or a general blood-derived process. METHODS: To this end we modified the method to determine whether calcium phosphate micro-crystals were present in the blood of patients with aortic stenosis. The method was first validated by adding synthetic calcium phosphate hydroxyapatite micro-crystals to healthy volunteer blood samples and determining the lower limit of detection. Then the method was used to examine the blood of 63 patients with echocardiographically confirmed aortic stenosis and 69 unaffected controls undergoing echocardiography for other reasons. Serum calcium and phosphate were measured and the calcium phosphate product compared in cases and controls. RESULTS: In the validation study, synthetic hydroxyapatite micro-crystals were identified down to a lower concentration limit of 0.008mg/mL. In the experimental study no particles were identified in any patient, with or without aortic stenosis, even though serum calcium phosphate was higher in cases compared with controls 2.6mmol/L (2.58-2.77) versus 2.47mmol/L (2.36-2.57), p = 0.005 for the difference. CONCLUSION: The results of our study confirm a positive association between serum calcium phosphate and aortic stenosis, but indicate that the calcium phosphate particles found in valve tissue do not precipitate freely in the blood

    A review of the osteoderms of lizards (Reptilia: Squamata)

    Get PDF
    Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non-overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two-layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this ‘bony armour’ might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro- and macrostructure, development, and function, with a view to stimulating further work

    Roçado, sítio e comunidade Senhor do Bonfim.

    Get PDF
    Discute-se nesse capítulo os impactos de políticas públicas para agricultura familiar sobre o conhecimento e práticas agrícolas tradicionais na comunidade quilombola Senhor do Bonfim-PB. Parte da hipótese de que essas políticas por priorizarem o lado econômico, inserem na comunidade elementos da agricultura modernizada, algo incoerente com o texto da lei de incentivo à agricultura familiar que apresenta como objetivo a sustentabilidade social, ambiental e econômica. Utilizou-se a pesquisa qualitativa com uso de entrevistas semiestruturadas, observação participante e metodologias participativas. Verificou-se que algumas políticas públicas estão a influenciar o modo produtivo dos agricultores permitindo a inserção de elementos da modernização da agricultura com consequente modificações no modo de fazer a agricultura

    Nanoanalytical analysis of bisphosphonate-driven alterations of microcalcifications using a 3D hydrogel system and in vivo mouse model

    Get PDF
    Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE-/- mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification
    • …
    corecore