26 research outputs found

    Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum

    Get PDF
    In 2011 four ice cores were extracted from the summit of Alto dell'Ortles (3859 m), the highest glacier of South Tyrol in the Italian Alps. This drilling site is located only 37 km southwest from where the Tyrolean Iceman, similar to 5.3 kyrs old, was discovered emerging from the ablating ice field of Tisenjoch (3210 m, near the Italian-Austrian border) in 1991. The excellent preservation of this mummy suggested that the Tyrolean Iceman was continuously embedded in prehistoric ice and that additional ancient ice was likely preserved elsewhere in South Tyrol. Dating of the ice cores from Alto dell'Ortles based on Pb-210, tritium, beta activity and C-14 determinations, combined with an empirical model (COPRA), provides evidence for a chronologically ordered ice stratigraphy from the modern glacier surface down to the bottom ice layers with an age of similar to 7 kyrs, which confirms the hypothesis. Our results indicate that the drilling site has continuously been glaciated on frozen bedrock since similar to 7 kyrs BP. Absence of older ice on the highest glacier of South Tyrol is consistent with the removal of basal ice from bedrock during the Northern Hemisphere Climatic Optimum (6-9 kyrs BP), the warmest interval in the European Alps during the Holocene. Borehole inclinometric measurements of the current glacier flow combined with surface ground penetration radar (GPR) measurements indicate that, due to the sustained atmospheric warming since the 1980s, an acceleration of the glacier Alto dell'Ortles flow has just recently begun. Given the stratigraphic-chronological continuity of the Mt. Ortles cores over millennia, it can be argued that this behaviour has been unprecedented at this location since the Northern Hemisphere Climatic Optimum

    Lightweight Building Skins: a geometry-based approach integrating structural and user comfort aspects in the early design stage

    No full text
    The use of fully glazed facades for office buildings presents the advantage of allowing daylight into the indoor spaces, improving the comfort and well-being of the occupants. However, transparent facades can also represent a hazard for the comfort of the users as the penetration of solar radiation inside the building increases the internal thermal loads and leads to overheating during the summer. The inclusion of a suitable shading system on the façade is a method to mitigate this issue, providing effective protection of glazed surfaces throughout the whole year. However, in order to achieve an overall efficient solution, also other aspects should be taken into account. For instance, the preservation of a good visual connection with the outdoors and an effective use of daylight as an alternative to artificial light are both very relevant aspects. Structural performance is certainly another relevant point that has to be carefully investigated. The aim in this case should be to pursue efficient structures where a responsible and conscious use of materials allows to limit the costs and the overall weight of the system without compromising the capability of the structure to withstand other load cases than self-weight (i.e. wind loads). The objective of this research is to develop an integrated, geometry-based design approach, incorporating user comfort aspects and structural demands of the shading elements in order to widen the range of possible solutions in the early design stage. Through the use of digital tools, designers are now able to perform several different simulations, investigating all the most relevant aspects related to the building industry like the ones mentioned above. However, the integration of aspects belonging to different expertise normally happens in a quite advanced design stage, compromising a direct and complete exploration of the design solution space. After a first study of daylight-related metrics and parametric digital tools available nowadays, some first tests were carried out in order to assess their applicability in the field of façade components. Building energy simulations were performed in Grasshopper 3d (https://www.grasshopper3d.com/) using Ladybug Tools (https://www.ladybug.tools/) while structural aspects were investigated through CEM (https://github.com/OleOhlbrock/CEM), an equilibrium-based tool for spatial structures. The combination of some of the existing digital tools and metrics together with others that were specifically defined for the problem at hand, leads to a new and more comprehensive design platform. In order to test the proposed approach, the HIB building (ETH Hönggerberg Campus, Zürich) was chosen as a case study. The outcome of the present work is to establish an efficient connection between structural behavior and building energy performances allowing a more comprehensive exploration of the design solutions space

    Geometry-based graphical methods for solar control in architecture: A digital framework

    No full text
    The form of a building is among the most critical design aspects concerning building energy consumption. Form-based passive design strategies, like solar control, can significantly reduce heating and cooling demands if implemented early in the design process. In this sense, there is an evident need for tools that can adequately support designers in their decisions. This paper aims to illustrate how geometry-based graphical methods (GGM) can provide effective support in the conceptual design stage. The paper introduces a novel digital framework for designing and analysing shading devices that leverages geometrical models and graphical methods. The digital implementation of GGM allows extending their applicability to three-dimensional and non-planar geometries. A comprehensive review of existing methods and tools for the design of shading devices lays the ground for the proposed digital framework, which is then demonstrated through two case studies. The results show that the diagrammatic nature of GGM facilitates a better and more direct understanding of the relationship between form and performance.ISSN:2095-2635ISSN:2095-264

    Holistic façade design: integrating architectural, structural and environmental parameters

    No full text
    The inherent interdisciplinarity in the design of building envelopes gives the opportunity to correlate different aspects within the boundaries of a single subsystem. In fact, designers have to account for parameters and criteria that belong to diverse fields – such as architecture, building physics, structural design and construction technology – in the constant search for the most suitable trade-offs. A hierarchical approach, in which each aspect is considered separately is a logic answer to this complexity, however, it also fosters the idea that the overall process is just a simple sum of the single parts. Through a case study, the present work shows how technical and architectural requirements can be integrated from the early design stage and the advantages of addressing questions related to structural design, solar protection, and visual comfort simultaneously. By taking advantage of the combination of different computational digital tools, the case study focuses on the design of folded plate façade elements to retrofit an office building located in Zurich, Switzerland

    The Canopy: A Lightweight Spatial Installation Informed by Graphic Statics

    No full text
    This paper illustrates the design and fabrication process of the temporary installation The Canopy, developed as part of the fib Symposium on Conceptual Design of Structures 2021. The geometry of the perforated hanging membrane that forms The Canopy is the result of seamless integration between the disciplines of architecture and structural design, which was one of the driving inputs for the entire process. Particularly, the use of geometry-based models and graphic statics allowed activating the interplay between these disciplines. This was the key to balancing the relationship between architectural spaces and structural requirements, and to informing the multifaceted design exploration of The Canopy from conceptual design to construction.ISSN:2075-530
    corecore