7 research outputs found

    A prediction model for underestimation of invasive breast cancer after a biopsy diagnosis of ductal carcinoma in situ: based on 2892 biopsies and 589 invasive cancers

    Get PDF
    Background: Patients with a biopsy diagnosis of ductal carcinoma in situ (DCIS) might be diagnosed with invasive breast cancer at excision, a phenomenon known as underestimation. Patients with DCIS are treated based on the risk of underestimation or progression to invasive cancer. The aim of our study was to expand the knowledge on underestimation and to develop a prediction model. Methods: Population-based data were retrieved from the Dutch Pathology Registry and the Netherlands Cancer Registry for DCIS between January 2011 and June 2012. Results: Of 2892 DCIS biopsies, 21% were underestimated invasive breast cancers. In multivariable analysis, risk factors were high-grade DCIS (odds ratio (OR) 1.43, 95% confidence interval (CI): 1.05–1.95), a palpable tumour (OR 2.22, 95% CI: 1.76–2.81), a BI-RADS (Breast Imaging Reporting and Data System) score 5 (OR 2.36, 95% CI: 1.80–3.09) and a suspected invasive component at biopsy (OR 3.84, 95% CI: 2.69–5.46). The predicted risk for underestimation ranged from 9.5 to 80.2%, with a median of 14.7%. Of the 596 invasive cancers, 39% had unfavourable features. Conclusions: The risk for an underestimated diagnosis of invasive breast cancer after a biopsy diagnosis of DCIS is considerable. With our prediction model, the individual risk of underestimation can be calculated based on routinely available preoperatively known risk factors (https://www.evidencio.com/models/show/1074)

    Severe Ankyrin-R deficiency results in impaired surface retention and lysosomal degradation of RhAG in human erythroblasts

    Get PDF
    Ankyrin-R provides a key link between band 3 and the spectrin cytoskeleton that helps to maintain the highly specialised erythrocyte biconcave shape. Ankyrin deficiency results in fragile spherocytic erythrocytes with reduced band 3 and protein 4.2 expression. We use in vitro differentiation of erythroblasts transduced with shRNAs targeting the ANK1 gene to generate erythroblasts and reticulocytes with a novel ankyrin-R 'near null' human phenotype with less than 5% of normal ankyrin expression. Using this model we demonstrate that absence of ankyrin negatively impacts the reticulocyte expression of a variety of proteins including band 3, glycophorin A, spectrin, adducin and more strikingly protein 4.2, CD44, CD47 and Rh/RhAG. Loss of band 3, which fails to form tetrameric complexes in the absence of ankyrin, alongside GPA, occurs due to reduced retention within the reticulocyte membrane during erythroblast enucleation. However, loss of RhAG is temporally and mechanistically distinct, occurring predominantly as a result of instability at the plasma membrane and lysosomal degradation prior to enucleation. Loss of Rh/RhAG was identified as common to erythrocytes with naturally occurring ankyrin deficiency and demonstrated to occur prior to enucleation in cultures of erythroblasts from a hereditary spherocytosis patient with severe ankyrin deficiency but not in those exhibiting milder reductions in expression. The identification of prominently reduced surface expression of Rh/RhAG in combination with direct evaluation of ankyrin expression using flow cytometry provides an efficient and rapid approach for the categorisation of hereditary spherocytosis arising from ankyrin deficiency
    corecore