5,432 research outputs found

    Absorption and generation of femtosecond laser-pulse excited spin currents in non-collinear magnetic bilayers

    Get PDF
    Spin currents can be generated on an ultrafast timescale by excitation of a ferromagnetic (FM) thin film with a femtosecond laser-pulse. Recently, it has been demonstrated that these ultrafast spin currents can transport angular momentum to neighbouring FM layers, being able to change both the magnitude and orientation of the magnetization in the adjacent layer. In this work, both the generation and absorption of these optically excited spin currents are investigated. This is done using non-collinear magnetic bilayers, i.e. two FM layers separated by a conductive spacer. Spin currents are generated in a Co/Ni multilayer with out-of-plane (OOP) anisotropy, and absorbed by a Co layer with an in-plane (IP) anisotropy. This behaviour is confirmed by careful analysis of the laser-pulse induced magnetization dynamics, whereafter it is demonstrated that the transverse spin current is absorbed very locally near the injection interface of the IP layer (90% within the first approx. 2 nm). Moreover, it will also be shown that this local absorption results in the excitation of THz standing spin waves within the IP layer. The dispersion measured for these high frequency spin waves shows a discrepancy with respect to the theoretical predictions, for which a first explanation involving intermixed interface regions is proposed. Lastly, the spin current generation is investigated using different number of repeats for the Co/Ni multilayer, which proves to be of great relevance for identifying the optical spin current generation mechanism

    Controlling skyrmion bubble confinement by dipolar interactions

    Get PDF
    Large skyrmion bubbles in confined geometries of various sizes and shapes are investigated, typically in the range of several micrometers. Two fundamentally different cases are studied to address the role of dipole-dipole interactions: (I) when there is no magnetic material present outside the small geometries and (II) when the geometries are embedded in films with a uniform magnetization. It is found that the preferential position of the skyrmion bubbles can be controlled by the geometrical shape, which turns out to be a stronger influence than local variations in material parameters. In addition, independent switching of the direction of the magnetization outside the small geometries can be used to further manipulate these preferential positions, in particular with respect to the edges. We show by numerical calculations that the observed interactions between the skyrmion bubbles and structure edge including the overall positioning of the bubbles are fully controlled by dipole-dipole interactions

    Tunable chiral spin texture in magnetic domain-walls

    Get PDF
    Magnetic domain-walls (DWs) with a preferred chirality exhibit very efficient current-driven motion. Since structural inversion asymmetry (SIA) is required for their stability, the observation of chiral domain walls in highly symmetric Pt/Co/Pt is intriguing. Here, we tune the layer asymmetry in this system and observe, by current-assisted DW depinning experiments, a small chiral field which sensitively changes. Moreover, we convincingly link the observed efficiency of DW motion to the DW texture, using DW resistance as a direct probe for the internal orientation of the DW under the influence of in-plane fields. The very delicate effect of capping layer thickness on the chiral field allows for its accurate control, which is important in designing novel materials for optimal spin-orbit-torque-driven DW motion.Comment: 12 pages, 5 figure

    Delayed kinetics of poliovirus RNA synthesis in a human cell line with reduced levels of hnRNP C proteins.

    Get PDF
    The hnRNP C heterotetramer [(C1(3))C2] binds RNA polymerase II transcripts in the nucleus, along with other proteins of the core hnRNP complex, and plays an important role in mRNA biogenesis and transport. Infection of HeLa cells with poliovirus causes hnRNP C to re-localize from the nucleus, where it is normally retained during interphase, to the cytoplasm. We have proposed that in the cytoplasm, the protein isoforms of hnRNP C participate in the recognition of viral specific RNAs by the poliovirus replication proteins and/or in the assembly of membrane-bound RNA replication complexes. In SK-OV-3 cells, which express reduced levels of hnRNP C compared to HeLa cells or 293 cells, the kinetics of poliovirus replication are delayed. hnRNP C is also re-localized from the nucleus to the cytoplasm in SK-OV-3 cells infected with poliovirus. Increased expression of hnRNP C in SK-OV-3 cells by transient transfection increases the rate of virus production and overall yield over that seen in mock-transfected cells. We propose that hnRNP C interacts with poliovirus RNA and replication proteins to increase the efficiency of viral genomic RNA synthesis

    Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure.

    Get PDF
    Heart failure (HF) is characterized by abnormal mitochondrial calcium (Ca2+) handling, energy failure and impaired mitophagy resulting in contractile dysfunction and myocyte death. We have previously shown that the 18-kDa mitochondrial translocator protein of the outer mitochondrial membrane (TSPO) can modulate mitochondrial Ca2+ uptake. Experiments were designed to test the role of the TSPO in a murine pressure-overload model of HF induced by transverse aortic constriction (TAC). Conditional, cardiac-specific TSPO knockout (KO) mice were generated using the Cre-loxP system. TSPO-KO and wild-type (WT) mice underwent TAC for 8 weeks. TAC-induced HF significantly increased TSPO expression in WT mice, associated with a marked reduction in systolic function, mitochondrial Ca2+ uptake, complex I activity and energetics. In contrast, TSPO-KO mice undergoing TAC had preserved ejection fraction, and exhibited fewer clinical signs of HF and fibrosis. Mitochondrial Ca2+ uptake and energetics were restored in TSPO KO mice, associated with decreased ROS, improved complex I activity and preserved mitophagy. Thus, HF increases TSPO expression, while preventing this increase limits the progression of HF, preserves ATP production and decreases oxidative stress, thereby preventing metabolic failure. These findings suggest that pharmacological interventions directed at TSPO may provide novel therapeutics to prevent or treat HF
    • …
    corecore