10 research outputs found

    Spin Anisotropy and Slow Dynamics in Spin Glasses

    Full text link
    We report on an extensive study of the influence of spin anisotropy on spin glass aging dynamics. New temperature cycle experiments allow us to compare quantitatively the memory effect in four Heisenberg spin glasses with various degrees of random anisotropy and one Ising spin glass. The sharpness of the memory effect appears to decrease continuously with the spin anisotropy. Besides, the spin glass coherence length is determined by magnetic field change experiments for the first time in the Ising sample. For three representative samples, from Heisenberg to Ising spin glasses, we can consistently account for both sets of experiments (temperature cycle and magnetic field change) using a single expression for the growth of the coherence length with time.Comment: 4 pages and 4 figures - Service de Physique de l'Etat Condense CNRS URA 2464), DSM/DRECAM, CEA Saclay, Franc

    The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems

    Full text link
    The magnetisation relaxations of three different types of geometrically frustrated magnetic systems have been studied with the same experimental procedures as previously used in spin glasses. The materials investigated are Y2_2Mo2_2O7_7 (pyrochlore system), SrCr8.6_{8.6}Ga3.4_{3.4}O19_{19} (piled pairs of Kagom\'e layers) and (H3_3O)Fe3_3(SO4_4)2_2(OH)6_6 (jarosite compound). Despite a very small amount of disorder, all the samples exhibit many characteristic features of spin glass dynamics below a freezing temperature TgT_g, much smaller than their Curie-Weiss temperature θ\theta. The ageing properties of their thermoremanent magnetization can be well accounted for by the same scaling law as in spin glasses, and the values of the scaling exponents are very close. The effects of temperature variations during ageing have been specifically investigated. In the pyrochlore and the bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a certain temperature TpT_p re-initializes ageing and the evolution at the new temperature is the same as if the system were just quenched from above TgT_g. However, as the temperature is raised back to TpT_p, the sample recovers the state it had previously reached at that temperature. These features are known in spin glasses as rejuvenation and memory effects. They are clear signatures of the spin glass dynamics. In the Kagom\'e compound, there is also some rejuvenation and memory, but much larger temperature changes are needed to observe the effects. In that sense, the behaviour of this compound is quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings of the International Conference on Highly Frustrated Magnetism (HFM2003), August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France

    Aging, rejuvenation and memory phenomena in spin glasses

    Full text link
    In this paper, we review several important features of the out-of-equilibrium dynamics of spin glasses. Starting with the simplest experiments, we discuss the scaling laws used to describe the isothermal aging observed in spin glasses after a quench down to the low temperature phase. We report in particular new results on the sub-aging behaviour of spin glasses. We then discuss the rejuvenation and memory effects observed when a spin glass is submitted to temperature variations during aging, from the point of view of both energy landscape pictures and of real space pictures. We highlight the fact that both approaches point out the necessity of hierarchical processes involved in aging. Finally, we report an investigation of the effect of small temperature variations on aging in spin glass samples with various anisotropies which indicates that this hierarchy depends on the spin anisotropy.Comment: submitted for the Proceedings of Stat Phys 22, Bangalore (India

    Spin Glasses: Model systems for non-equilibrium dynamics

    Full text link
    Spin glasses are frustrated magnetic systems due to a random distribution of ferro- and antiferromagnetic interactions. An experimental three dimensional (3d) spin glass exhibits a second order phase transition to a low temperature spin glass phase regardless of the spin dimensionality. In addition, the low temperature phase of Ising and Heisenberg spin glasses exhibits similar non-equilibrium dynamics and an infinitely slow approach towards a thermodynamic equilibrium state. There are however significant differences in the detailed character of the dynamics as to memory and rejuvenation phenomena and the influence of critical dynamics on the behaviour. In this article, some aspects of the non-equilibrium dynamics of an Ising and a Heisenberg spin glass are briefly reviewed and some comparisons are made to other glassy systems that exhibit magnetic non-equilibrium dynamics.Comment: To appear in J. Phys.: Condens. Matter, Proceedings from HFM2003, Grenobl

    Real spin glasses relax slowly in the shade of hierarchical trees

    Get PDF
    The Parisi solution of the mean-field spin glass has been widely accepted and celebrated. Its marginal stability in 3d and its complexity however raised the question of its relevance to real spin glasses. This paper gives a short overview of the important experimental results which could be understood within the mean-field solution. The existence of a true phase transition and the particular behaviour of the susceptibility below the freezing temperature, predicted by the theory, are clearly confirmed by the experimental results. The behaviour of the complex order parameter and of the Fluctuation Dissipation ratio are in good agreement with results of spontaneous noise measurements. The very particular ultrametric symmetry, the key feature of the theory, provided us with a simple description of the rejuvenation and memory effects observed in experiment. Finally, going a step beyond mean-field, the paper shortly discusses new analyses in terms of correlated domains characterized by their length scales, as well as new experiments on superspin glasses which compare well with recent theoretical simulations.Comment: To appear in the proceedings of "Wandering with Curiosity in Complex Landscapes", a scientific conference in honour of Giorgio Parisi for his 60th birthday, Roma, September 8-10 2008 (submitted for the special issue of the Journal of Statistical Physics, 2009

    On the scaling and ageing behaviour of the alternating susceptibility in spin glasses and local scale-invariance

    Full text link
    The frequency-dependent scaling of the dispersive and dissipative parts of the alternating susceptibility is studied for spin glasses at criticality. An extension of the usual ωt\omega t-scaling is proposed. Simulational data from the three-dimensional Ising spin glass agree with this new scaling form and moreover reproduce well the scaling functions explicitly calculated for systems satisfying local scale-invariance. There is also a qualitative agreement with existing experimental data.Comment: 19 pages, 2 figures, to appear in special issue of J. Phys. Cond. Matt. dedicated to Lothar Schaefer on the occasion of his 60th birthday, final form with IOP macro

    Influence of anisotropy on the memory effect in spin glasses : from Ising to Heisenberg spins

    No full text
    International audienceExperiments on spin glasses show that it is possible to store the memory of several aging stages performed successively at different temperatures while cooling from Tg: Here, we investigate how the sharpness of the memory effect in spin glass systems depends on the spin anisotropy. We find that the sharpness of the memory effect shows a systematic decrease with increasing anisotropy, which suggests that the temperature dependence of the free-energy barriers is, somewhat surprisingly, softer in the strong anisotropy (Ising) limit

    Rejuvenation and Memory Effects in Spin Glasses: Temperature as a Microscope

    No full text
    URL: http://www-spht.cea.fr/articles/s03/172 Kavli Institute for Theoretical Physic
    corecore