43 research outputs found

    Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery

    Get PDF
    Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed

    Pharmacological inhibition of 17β-hydroxysteroid dehydrogenase impairs human endometrial cancer growth in an orthotopic xenograft mouse model

    Get PDF
    Endometrial cancer (EC) is the most common gynaecological tumor in developed countries and its incidence is increasing. Approximately 80% of newly diagnosed EC cases are estrogen-dependent. Type 1 17β-hydroxysteroid dehydrogenase (17β-HSD-1) is the enzyme that catalyzes the final step in estrogen biosynthesis by reducing the weak estrogen estrone (E1) to the potent estrogen 17β-estradiol (E2), and previous studies showed that this enzyme is implicated in the intratumoral E2 generation in EC. In the present study we employed a recently developed orthotopic and estrogen-dependent xenograft mouse model of EC to show that pharmacological in-hibition of the 17β-HSD-1 enzyme inhibits disease development. Tumors were induced in one uterine horn of athymic nude mice by  intrauterine injection of  the  well-differentiated human endometrial adenocarcinoma Ishikawa cell line, modified to express human 17β-HSD-1 in levels comparable to EC, and the luciferase and green fluorescent protein reporter genes. Controlled estrogen exposure in ovariectomized mice was achieved using subcutaneous MedRod implants that released either the low active estrone (E1) precursor or vehicle. A subgroup of E1 supplemented mice received daily oral gavage of FP4643, a well-characterized 17β-HSD-1 in-hibitor. Bioluminescence imaging (BLI) was used to measure tumor growth non-invasively. At sacrifice, mice receiving E1  and  treated with the  FP4643 inhibitor showed a  significant reduction in  tumor growth by approximately 65% compared to mice receiving E1. Tumors exhibited metastatic spread to the peritoneum, to the  lymphovascular space (LVI), and  to  the  thoracic cavity. Metastatic spread and  LVI  invasion were both significantly reduced in the inhibitor-treated group. Transcriptional profiling of tumors indicated that FP4643 treatment reduced the oncogenic potential at the mRNA level. In conclusion, we show that 17β-HSD-1 inhibition represents a promising novel endocrine treatment for EC.   </div

    Towards Endometriosis Diagnosis by Gadofosveset-Trisodium Enhanced Magnetic Resonance Imaging

    Get PDF
    Endometriosis is defined as the presence of endometrial tissue outside the uterus. It affects 10–15% of women during reproductive age and has a big personal and social impact due to chronic pelvic pain, subfertility, loss of work-hours and medical costs. Such conditions are exacerbated by the fact that the correct diagnosis is made as late as 8–11 years after symptom presentation. This is due to the lack of a reliable non-invasive diagnostic test and the fact that the reference diagnostic standard is laparoscopy (invasive, expensive and not without risks). High-molecular weight gadofosveset-trisodium is used as contrast agent in Magnetic Resonance Imaging (MRI). Since it extravasates from hyperpermeable vessels more easily than from mature blood vessels, this contrast agent detects angiogenesis efficiently. Endometriosis has high angiogenic activity. Therefore, we have tested the possibility to detect endometriosis non-invasively using Dynamic Contrast-Enhanced MRI (DCE-MRI) and gadofosveset-trisodium as a contrast agent in a mouse model. Endometriotic lesions were surgically induced in nine mice by autologous transplantation. Three weeks after lesion induction, mice were scanned by DCE-MRI. Dynamic image analysis showed that the rates of uptake (inwash), persistence and outwash of the contrast agent were different between endometriosis and control tissues (large blood vessels and back muscle). Due to the extensive angiogenesis in induced lesions, the contrast agent persisted longer in endometriotic than control tissues, thus enhancing the MRI signal intensity. DCE-MRI was repeated five weeks after lesion induction, and contrast enhancement was similar to that observed three weeks after endometriosis induction. The endothelial-cell marker CD31 and the pericyte marker α-smooth-muscle-actin (mature vessels) were detected with immunohistochemistry and confirmed that endometriotic lesions had significantly higher prevalence of new vessels (CD31 only positive) than the uterus and control tissues. The diagnostic value of gadofosveset-trisodium to detect endometriosis should be tested in human settings

    Endometriotic cell culture contamination and authenticity: a source of bias in in vitro research?

    No full text
    STUDY QUESTION: Are the primary cell cultures and cell lines used in endometriosis research of sufficient quality? SUMMARY ANSWER: Primary cells used in endometriosis research lack purity and phenotypic characterisation, and cell lines are not genotypically authenticated. WHAT IS KNOWN ALREADY: The poor reproducibility of in vitro research and the lack of authenticity of the cell lines used represent reasons of concern in the field of reproductive biology and endometriosis research. STUDY DESIGN, SIZE, DURATION: In the present study, past in vitro research in the field of endometriosis was systematically reviewed to determine whether the appropriate quality controls were considered. In addition, we explored the performance of Paired Box 2 (Pax2) as an endometrium specific marker in endometrial and endometriotic primary cell cultures; we also characterised the most diffused endometriosis cell lines with respect to important markers including the short tandem repeat (STR) profile. PARTICIPANTS/MATERIALS, SETTING, METHODS: Literature review part: almost 300 published protocols describing the isolation and creation of primary cell cultures from endometriosis were reviewed. Wet-lab part: primary cells isolated from 13 endometriosis patients were analysed by immunohistochemistry, immunofluorescence and FACS for the expression of Pax2. Cell lines Z11 and Z12, the most diffused endometriosis cell lines, were characterised with respect to the expression of Pax2, steroid hormone receptors and STR profile. MAIN RESULTS AND THE ROLE OF CHANCE: From the literature review work, we underscored the lack of sufficient cell purity and phenotypic characterisation of primary cell cultures, which present high risk of contaminations from surrounding non-endometriotic tissues. Past work based on the use of cell lines was reviewed as well, and it emerged that cell line authentication was never performed. In an effort to address these weaknesses for future research, we present data on the performance of Pax2, a suitable marker to exclude ovarian (and other non-endometrial) cell contaminations from primary cell cultures; STR profiles of cell lines Z11 and Z12 were analysed and indicated that the cells were authentic. These profiles are now available for authentication purposes to researchers wishing to perform experiments with these cells. A quality control pipeline to assure sufficient quality of in vitro research in the field of reproductive biology and endometriosis is proposed. We encourage scientists, research institutes, journal reviewers, editors and funding bodies to raise awareness of the problem and adopt appropriate policies to solve it in the future. LARGE-SCALE DATA: STR profiles of cell lines Z11 and Z12 are deposited at the Cellosaurus database-web.expasy.org. LIMITATIONS, REASONS FOR CAUTION: There may be additional markers suitable to assess cell quality. WIDER IMPLICATIONS OF THE FINDINGS: Future in vitro research in endometriosis and the reliability of outcomes can be improved by using the recommendations presented in this study

    Endometriotic cell culture contamination and authenticity:a source of bias in in vitro research?

    No full text
    STUDY QUESTION: Are the primary cell cultures and cell lines used in endometriosis research of sufficient quality? SUMMARY ANSWER: Primary cells used in endometriosis research lack purity and phenotypic characterisation, and cell lines are not genotypically authenticated. WHAT IS KNOWN ALREADY: The poor reproducibility of in vitro research and the lack of authenticity of the cell lines used represent reasons of concern in the field of reproductive biology and endometriosis research. STUDY DESIGN, SIZE, DURATION: In the present study, past in vitro research in the field of endometriosis was systematically reviewed to determine whether the appropriate quality controls were considered. In addition, we explored the performance of Paired Box 2 (Pax2) as an endometrium specific marker in endometrial and endometriotic primary cell cultures; we also characterised the most diffused endometriosis cell lines with respect to important markers including the short tandem repeat (STR) profile. PARTICIPANTS/MATERIALS, SETTING, METHODS: Literature review part: almost 300 published protocols describing the isolation and creation of primary cell cultures from endometriosis were reviewed. Wet-lab part: primary cells isolated from 13 endometriosis patients were analysed by immunohistochemistry, immunofluorescence and FACS for the expression of Pax2. Cell lines Z11 and Z12, the most diffused endometriosis cell lines, were characterised with respect to the expression of Pax2, steroid hormone receptors and STR profile. MAIN RESULTS AND THE ROLE OF CHANCE: From the literature review work, we underscored the lack of sufficient cell purity and phenotypic characterisation of primary cell cultures, which present high risk of contaminations from surrounding non-endometriotic tissues. Past work based on the use of cell lines was reviewed as well, and it emerged that cell line authentication was never performed. In an effort to address these weaknesses for future research, we present data on the performance of Pax2, a suitable marker to exclude ovarian (and other non-endometrial) cell contaminations from primary cell cultures; STR profiles of cell lines Z11 and Z12 were analysed and indicated that the cells were authentic. These profiles are now available for authentication purposes to researchers wishing to perform experiments with these cells. A quality control pipeline to assure sufficient quality of in vitro research in the field of reproductive biology and endometriosis is proposed. We encourage scientists, research institutes, journal reviewers, editors and funding bodies to raise awareness of the problem and adopt appropriate policies to solve it in the future. LARGE-SCALE DATA: STR profiles of cell lines Z11 and Z12 are deposited at the Cellosaurus database-web.expasy.org. LIMITATIONS, REASONS FOR CAUTION: There may be additional markers suitable to assess cell quality. WIDER IMPLICATIONS OF THE FINDINGS: Future in vitro research in endometriosis and the reliability of outcomes can be improved by using the recommendations presented in this study
    corecore