28 research outputs found

    Organic residues in archaeology - the highs and lows of recent research

    Get PDF
    YesThe analysis of organic residues from archaeological materials has become increasingly important to our understanding of ancient diet, trade and technology. Residues from diverse contexts have been retrieved and analysed from the remains of food, medicine and cosmetics to hafting material on stone arrowheads, pitch and tar from shipwrecks, and ancient manure from soils. Research has brought many advances in our understanding of archaeological, organic residues over the past two decades. Some have enabled very specific and detailed interpretations of materials preserved in the archaeological record. However there are still areas where we know very little, like the mechanisms at work during the formation and preservation of residues, and areas where each advance produces more questions rather than answers, as in the identification of degraded fats. This chapter will discuss some of the significant achievements in the field over the past decade and the ongoing challenges for research in this area.Full text was made available in the Repository on 15th Oct 2015, at the end of the publisher's embargo period

    Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro.

    No full text
    AIMS/HYPOTHESIS: Long-term exposure of beta cells to lipids, particularly saturated fatty acids in vitro, results in cellular dysfunction and apoptosis (lipotoxicity); this could contribute to obesity-related diabetes. Our aims were to relate cell death to intracellular triglyceride concentration, composition and localisation following incubation of INS1 cells in saturated and unsaturated NEFA in high and low glucose concentrations. MATERIALS AND METHODS: Insulin-producing INS1 cells were cultured (24 h; 3 and 20 mmol/l glucose) with palmitic, oleic or linoleic acids and the resulting intracellular lipids were analysed by gas chromatography and microscopy. Cell death was determined by quantitative microscopy and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and glucose-stimulated insulin secretion by ELISA. RESULTS: All NEFA (0.5 mmol/l, 0.5% albumin) inhibited glucose-stimulated (20 mmol/l) insulin secretion. Cytotoxicity was evident only with palmitic acid (p<0.05), in which case intracellular triglyceride consisted largely of tripalmitin in angular-shaped dilated endoplasmic reticulum. Cytotoxicity and morphological disruption were reduced by addition of unsaturated NEFA. Triglyceride content (control cells; 14.5 ng/mug protein) increased up to 10-fold following incubation in NEFA (oleic acid 153.2 ng/mug protein; p<0.05) and triglyceride and phospholipid fractions were both enriched with the specific fatty acid added to the medium (p<0.05). CONCLUSIONS/INTERPRETATION: In INS1 cells, palmitic acid is converted in the endoplasmic reticulum to solid tripalmitin (melting point >65 degrees C), which could induce endoplasmic reticulum stress proteins and signal apoptosis; lipid-induced apoptosis would therefore be a consequence of the physicochemical properties of these triglycerides. Since cellular triglycerides composed of single species of fatty acid are not likely to occur in vivo, destruction of beta cells by saturated fatty acids could be predominantly an in vitro scenario
    corecore