4 research outputs found

    Vector Competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for Three Zika Virus Lineages

    No full text
    International audienceZika virus (ZIKV) has caused severe epidemics in South America beginning in 2015, following its spread through the Pacific. We comparatively assessed the vector competence of ten populations of Aedesaegypti and Ae. albopictus from Brazil and two of Ae.aegypti and one of Culex quinquefasciatus from New Caledonia to transmit three ZIKV isolates belonging to African, Asian and American lineages. Recently colonized mosquitoes from eight distinct sites from both countries were orally challenged with the same viral load (107 TCID50/mL) and examined after 7, 14 and 21 days. Cx. quinquefasciatus was refractory to infection with all virus strains. In contrast, although competence varied with geographical origin, Brazilian and New Caledonian Ae. aegypti could transmit the three ZIKV lineages, with a strong advantage for the African lineage (the only one reaching saliva one-week after challenge). Brazilian Ae. albopictus populations were less competent than Ae. aegypti populations. Ae. albopictus generally exhibited almost no transmission for Asian and American lineages, but was efficient in transmitting the African ZIKV. Viral surveillance and mosquito control measures must be strengthened to avoid the spread of new ZIKV lineages and minimize the transmission of viruses currently circulating

    Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2017-07-18T16:03:08Z No. of bitstreams: 1 dinair_lima_etal_IOC_2017.pdf: 2606904 bytes, checksum: a4ae71a689f8f32b0eb91a7d0dcf22f3 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2017-07-18T16:25:05Z (GMT) No. of bitstreams: 1 dinair_lima_etal_IOC_2017.pdf: 2606904 bytes, checksum: a4ae71a689f8f32b0eb91a7d0dcf22f3 (MD5)Made available in DSpace on 2017-07-18T16:25:05Z (GMT). No. of bitstreams: 1 dinair_lima_etal_IOC_2017.pdf: 2606904 bytes, checksum: a4ae71a689f8f32b0eb91a7d0dcf22f3 (MD5) Previous issue date: 2017Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil / Institut Pasteur. Arboviruses and Insect Vectors. Paris, France.Institut Pasteur. Epidemiology of infectious diseases. Paris, France.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil.Institut Pasteur. Arboviruses and Insect Vectors. Paris, France.Instituto Evandro Chagas. Belém, PA, BrasilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil.Institut Pasteur. Arboviruses and Insect Vectors. Paris, France.Yellow fever virus (YFV) causing a deadly viral disease is transmitted by the bite of infected mosquitoes. In Brazil, YFV is restricted to a forest cycle maintained between non-human primates and forest-canopy mosquitoes, where humans can be tangentially infected. Since late 2016, a growing number of human cases have been reported in Southeastern Brazil at the gates of the most populated areas of South America, the Atlantic coast, with Rio de Janeiro state hosting nearly 16 million people. We showed that the anthropophilic mosquitoes Aedes aegypti and Aedes albopictus as well as the YFV-enzootic mosquitoes Haemagogus leucocelaenus and Sabethes albiprivus from the YFV-free region of the Atlantic coast were highly susceptible to American and African YFV strains. Therefore, the risk of reemergence of urban YFV epidemics in South America is major with a virus introduced either from a forest cycle or by a traveler returning from the YFV-endemic region of Africa

    Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016-2018

    Get PDF
    Submitted by Sandra Infurna ([email protected]) on 2019-05-02T11:21:12Z No. of bitstreams: 1 FilipeVS_Abreu_RicardoLOliveira_etal_IOC_2019.pdf: 2702570 bytes, checksum: bd3c61c9aca178ef21e167e4a3668cbb (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-05-02T11:39:48Z (GMT) No. of bitstreams: 1 FilipeVS_Abreu_RicardoLOliveira_etal_IOC_2019.pdf: 2702570 bytes, checksum: bd3c61c9aca178ef21e167e4a3668cbb (MD5)Made available in DSpace on 2019-05-02T11:39:48Z (GMT). No. of bitstreams: 1 FilipeVS_Abreu_RicardoLOliveira_etal_IOC_2019.pdf: 2702570 bytes, checksum: bd3c61c9aca178ef21e167e4a3668cbb (MD5) Previous issue date: 2019Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil / Instituto Federal do Norte de Minas Gerais. Salinas, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.MIVEGEC Laboratory. IRD-CNRS Université de Montpellier, Montpellier, France.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Secretaria de Saúde do Estado do Rio de Janeiro. Gerência de Estudos e Pesquisas em Antropozoonoses. Rio de Janeiro, RJ, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Coordenação Geral de Vigilância das Doenças Transmissíveis. Brasília, DF, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Saúde Ambiental e Saúde do Trabalhador. Brasília, DF, Brasil.Subsecretaria de Vigilância e Proteção à Saúde de Minas Gerais. Belo Horizonte, MG, Brasil.Secretaria de Saúde do Estado do Rio de Janeiro. Superintendência de Vigilância Epidemiológica e Ambiental. Rio de Janeiro, RJ, Brasil.Secretaria Estadual de Saúde do Espírito Santo. Núcleo Especial de Vigilância Ambiental. Vitória, ES, Brasil.Secretaria de Saúde do Estado da Bahia. Salvador, Bahia, Brasil.Universidade Federal do Espírito Santo. Vitória, ES, Brasil.MIVEGEC Laboratory. IRD-CNRS Université de Montpellier, Montpellier, France.Institut Pasteur. Arboviruses and Insect Vectors. Paris, France.UMR BIPAR. Animal Health Laboratory. ANSES. INRA. Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.The yellow fever virus (YFV) caused a severe outbreak in Brazil in 2016-2018 that rapidly spread across the Atlantic Forest in its most populated region without viral circulation for almost 80 years. A comprehensive entomological survey combining analysis of distribution, abundance and YFV natural infection in mosquitoes captured before and during the outbreak was conducted in 44 municipalities of five Brazilian states. In total, 17,662 mosquitoes of 89 species were collected. Before evidence of virus circulation, mosquitoes were tested negative but traditional vectors were alarmingly detected in 82% of municipalities, revealing high receptivity to sylvatic transmission. During the outbreak, five species were found positive in 42% of municipalities. Haemagogus janthinomys and Hg. leucocelaenus are considered the primary vectors due to their large distribution combined with high abundance and natural infection rates, concurring together for the rapid spread and severity of this outbreak. Aedes taeniorhynchus was found infected for the first time, but like Sabethes chloropterus and Aedes scapularis, it appears to have a potential local or secondary role because of their low abundance, distribution and infection rates. There was no evidence of YFV transmission by Aedes albopictus and Aedes aegypti, although the former was the most widespread species across affected municipalities, presenting an important overlap between the niches of the sylvatic vectors and the anthropic ones. The definition of receptive areas, expansion of vaccination in the most affected age group and exposed populations and the adoption of universal vaccination to the entire Brazilian population need to be urgently implemented
    corecore