1,531 research outputs found

    Uranium Mill Trailings Geotechnical Investigations - A Case History

    Get PDF
    Uranium mill tailings at Union Carbide Corporation\u27s mining and mill complex at Uravan, Colorado, are deposited in two tailings piles along a steep hillside. The tailings are deposited in slurry form, allowed to decant, and the decant liquid removed for recycling in the milling operation. The impoundment dikes are raised using the coarser portion of the tailings in an upstream method of construction. At the time of the study, the height of the tailings piles was in excess of 100 feet. Continued use of these piles necessitated a detailed geotechnical stability evaluation and design of stabilizing measures in order to maintain safety factors and meet regulatory requirements. Any failure of these slopes could have serious consequences. This paper discusses the geotechnical evaluation of the tailings piles, design and construction of the stabilizing measures, and the performance of the tailings pile slopes. The work was performed to meet the requirements set by the Colorado Department of Health, a State of Colorado agency, and the Nuclear Regulatory Commission of the United States, which acted as consultant and reviewer to the Department of Health. These regulatory agencies conducted a detailed review of the design and construction activities. Since the construction of the stabilizing berms, a regular monitoring program has been in effect. The data collected to date indicate that the performance of the slopes has been satisfactory

    Orbiting Resonances and Bound States in Molecular Scattering

    Full text link
    A family of orbiting resonances in molecular scattering is globally described by using a single pole moving in the complex angular momentum plane. The extrapolation of this pole at negative energies gives the location of the bound states. Then a single pole trajectory, that connects a rotational band of bound states and orbiting resonances, is obtained. These complex angular momentum singularities are derived through a geometrical theory of the orbiting. The downward crossing of the phase-shifts through pi/2, due to the repulsive region of the molecular potential, is estimated by using a simple hard-core model. Some remarks about the difference between diffracted rays and orbiting are also given.Comment: 18 pages, 3 figures, to appear in Physical Review

    Decay of the Sinai Well in D dimensions

    Full text link
    We study the decay law of the Sinai Well in DD dimensions and relate the behavior of the decay law to internal distributions that characterize the dynamics of the system. We show that the long time tail of the decay is algebraic (1/t1/t), irrespective of the dimension DD.Comment: 14 pages, Figures available under request. Revtex. Submitted to Phys. Rev. E.,e-mail: [email protected]

    Fluctuation, time-correlation function and geometric Phase

    Get PDF
    We establish a fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change to the time integral of the quantum correlation function between the projection operator and force operator of the ``fast'' system. By taking a cue from linear response theory we relate the quantum fluctuation in the generator to the generalised susceptibility. Relation between the open-path geometric phase, diagonal elements of the quantum metric tensor and the force-force correlation function is provided and the classical limit of the fluctuation-correlation theorem is also discussed.Comment: Latex, 12 pages, no figures, submitted to J. Phys. A: Math & Ge

    Connecting Berry's phase and the pumped charge in a Cooper pair pump

    Full text link
    The properties of the tunnelling-charging Hamiltonian of a Cooper pair pump are well understood in the regime of weak and intermediate Josephson coupling, i.e. when EJ≲ECE_{\mathrm{J}}\lesssim E_{\mathrm{C}}. It is also known that Berry's phase is related to the pumped charge induced by the adiabatical variation of the eigenstates. We show explicitly that pumped charge in Cooper pair pump can be understood as a partial derivative of Berry's phase with respect to the phase difference ϕ\phi across the array. The phase fluctuations always present in real experiments can also be taken into account, although only approximately. Thus the measurement of the pumped current gives reliable, yet indirect, information on Berry's phase. As closing remarks, we give the differential relation between Berry's phase and the pumped charge, and state that the mathematical results are valid for any observable expressible as a partial derivative of the Hamiltonian.Comment: 5 pages, 5 figures, RevTeX, Presentation has been clarifie

    Zeta Function Zeros, Powers of Primes, and Quantum Chaos

    Full text link
    We present a numerical study of Riemann's formula for the oscillating part of the density of the primes and their powers. The formula is comprised of an infinite series of oscillatory terms, one for each zero of the zeta function on the critical line and was derived by Riemann in his paper on primes assuming the Riemann hypothesis. We show that high resolution spectral lines can be generated by the truncated series at all powers of primes and demonstrate explicitly that the relative line intensities are correct. We then derive a Gaussian sum rule for Riemann's formula. This is used to analyze the numerical convergence of the truncated series. The connections to quantum chaos and semiclassical physics are discussed

    The Approach to Ergodicity in Monte Carlo Simulations

    Get PDF
    The approach to the ergodic limit in Monte Carlo simulations is studied using both analytic and numerical methods. With the help of a stochastic model, a metric is defined that enables the examination of a simulation in both the ergodic and non-ergodic regimes. In the non-ergodic regime, the model implies how the simulation is expected to approach ergodic behavior analytically, and the analytically inferred decay law of the metric allows the monitoring of the onset of ergodic behavior. The metric is related to previously defined measures developed for molecular dynamics simulations, and the metric enables the comparison of the relative efficiencies of different Monte Carlo schemes. Applications to Lennard-Jones 13-particle clusters are shown to match the model for Metropolis, J-walking and parallel tempering based approaches. The relative efficiencies of these three Monte Carlo approaches are compared, and the decay law is shown to be useful in determining needed high temperature parameters in parallel tempering and J-walking studies of atomic clusters.Comment: 17 Pages, 7 Figure

    Fredholm methods for billiard eigenfunctions in the coherent state representation

    Full text link
    We obtain a semiclassical expression for the projector onto eigenfunctions by means of the Fredholm theory. We express the projector in the coherent state basis, thus obtaining the semiclassical Husimi representation of the stadium eigenfunctions, which is written in terms of classical invariants: periodic points, their monodromy matrices and Maslov indices.Comment: 12 pages, 10 figures. Submitted to Phys. Rev. E. Comments or questions to [email protected]
    • …
    corecore