
ELSEVIER Science of Computer Programming 27 (1996) 119- 137

Science of
Computer
Programming

Systolic arrays for the recognition of permutation-invariant
segments 1

Joost-Pieter Katoena·*, Berry Schoenrnakersh
•University of Twente, Department of Computing Science, P.O. Box 2 I 7, 7500 AE Enschede, The Netherlands

b Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Received October 1993; revised August 1995
Communicated by M. Rem

Let P be a permutation defined on sequences of length N. A sequence of N values is said to be
?-invariant when it does not change when permuted according to P. A program is said to
recognize ?-invariant segments when it determines for each segment of N successive input
values whether it is ?-invariant.

In this paper we derive a program scheme that generates efficient parallel programs for the
recognition of ?-invariant segments. The programs consist of a chain of cells extended with
a linear number of links between non-neighbouring cells. Under reasonable conditions on P,
these programs correspond to systolic arrays with both constant response time and constant
latency (independent of N). Efficient systolic arrays for problems such as palindrome recogni
tion or perfect shuffle recognition can be constructed automatically in this way. This is
illustrated for the palindrome recognition problem.

Keywords: Calculational program design; Palindrome recognition; Perfect shuffle; Permuta
tion-invariant segments; Square recognition; Systolic arrays

1. Introduction

In this paper we present several solutions to the following general recognition
problem. Given a fixed permutation Pon interval [O .. N), N ~ 0, the problem is to
design parallel programs that determine for each segment of N successive input values
whether it is permutation-invariant under P ("P-invariant", for short). That is, we

*Corresponding author. E-mail: katoen@cs.utwente.nl.
1 Part of the research was done while both authors worked at Eindhoven University of Technology. An

early abstract of this paper appeared as "A parallel program for the recognition of ?-invariant segments",
in: P. Quinton and Y. Robert, eds., Algorithms and Parallel VLSI Architectures II (Elsevier, Amsterdam,
1992), pp. 79-84.

0167-6423/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
Pll SO 167-6423(96)00009-3

120 J-P. Katoen, B. Schoenmakers /Science (){Computer Programming 27 (1996) 119-137

design parallel programs satisfying:

b(i) ='segment a[i .. i + N) is ?-invariant', i;?; 0,

where b denotes the output sequence (type boolean) and a denotes the input sequence
(any type). This relation between input and output sequences is described more
explicitly as:

b(i) = ('v'j:O ~) < N:a(i + j) = a(i + Pj)), i? 0. (1)

Several instances of this problem (or slight variants thereof) have been treated in
literature. Instances like palindrome recognition (Pj = N - 1 - j) and square recogni
tion (Pj = (j + K) mod N, N = 2K) have been used as examples in several papers
to explain design techniques for systolic computations [9, 8, 11, 12]. A generalization
of square recogmt10n, the recogmt1on of so-called K-rotated segments
(Pj = (j + K) mod N, 0 ~ K < N) has been addressed in [5]. A parallel program for
the more complex perfect-shuffle permutation (Pj = 2 (j mod K) + j div K, N = 2K) is
presented in [6]. Problems of this type are in vogue, because at solving them all
attention may be focused on arranging the computation such that inputs to the
systolic array are transferred to the right cell at the right moment, while the computa
tions to be performed by the individual cells play a minor role only. (For instance,
a related problem is to compute

which resembles a convolution as frequently encountered in signal and image process
ing (see, e.g., [7]). Our programs for recognizing ?-invariant segments can be modified
easily to solve this problem, too.)

The parallel programs we design are regular networks of cells that communicate
synchronously with each other by exchanging messages along directed channels. The
communication with the environment is typically limited to one or two of the cells.
Designing such parallel programs boils down to defining the functionality of each
individual cell and determining the interconnection pattern of these cells. Eventually it
remains to choose the order in which communications take place by a cell. This order
is independent of the data values communicated. Programs with such characteristics
are also known as systolic arrays or wave:front arrays [7]. The idea of viewing systolic
arrays as ordinary programs originates from [1].

To solve the general recognition problem specified by (1) systematically, we adopt
the design technique for (fine-grained) parallel programs described in [3, 4, 9, 1 OJ. (A
related design technique for systolic computations based on design approaches from
sequential programming is described in [11]). Briefly speaking, this design technique
requires that the specification be a formally defined relation between sequences of
input values and sequences of output values (like (1), for example). It then enables one
to derive parallel programs from the specification in a calculational way. Such

J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (/996) 119-137 121

a derivation proceeds by partitioning or manipulating the specification into simpler
ones. As the correctness of the individual steps in the derivation can be checked easily,
an a posteriori correctness proof of the program is not required.

The design decisions in a derivation are guided by performance considerations,
such as space and speed requirements. The space utilization of the programs is
determined by the total number of local variables distributed among the individual
cells. In order to assess the time efficiency of the programs we use sequence functions,
in terms of which concepts like response time and latency are made explicit [9, 12].

The organization of this paper is as follows. In Section 2, we decompose the general
problem into the design of a head cell and a remaining array of cells. This section also
introduces the program notation used throughout the paper. In Section 3, we then
construct a systolic array that recognizes palindromes, using the design technique for
parallel programs mentioned above. In Section 4, it is first shown that the problem of
recognizing P-invariant segments can be split into two identical, but simpler problems
involving P and p- 1 • In Section 4.1, we then solve the general problem as specified by
(1) in a systematic way, using communication channels between neighbouring cells
only. However, this (usual) interconnection pattern turns out to be too restrictive,
since it yields a solution with a space complexity of 0 (N 2). In Section 4.2, the problem
is approached quite differently by introducing channels between cells that may be
arbitrarily far apart. This yields a program scheme that generates time-efficient arrays
of linear size. In Section 4.3, an alternative efficient scheme is derived, again using
sequence functions in the design. In Section 5, the program from Section 3 is
compared to the solution obtained by instantiating the program scheme from Section
4.2. It turns out that the latter solution can be transformed into the first one by
removing some redundant channels and cells. In Section 6, we show that the programs
generated by our program schemes need not be systolic due to the presence of
broadcast channels, and we discuss how this problem can be avoided. Finally, some
distinctive features of our approach are summarized and some final remarks are made
in Section 7.

2. Introduction of the head cell

There is a general problem with specifications like (1), which we will solve ade
quately in this section. Furthermore, the program notation that will be used through
out this paper is introduced in this section.

Given specification (1), it follows that b(i) depends on segment a [i .. i + N), for all
i;;:::: 0. Therefore, input a(O) through a(N - 1) must have been consumed before output
b(O) can be produced. Subsequently, output b(i + 1), i;;:::: 0, can be produced right after
input a(i + N) has been consumed. The communication behaviour with minimal
latency (which means that outputs are produced as soon as possible} is thus equal to:

122 J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (1996) 119-137

By itself, such a communication behaviour is not really a problem, but when we
consider generalizations of (1), we get a specification of cell n, for which, say,

a";(b;a)*

is the communication behaviour with minimal latency. Now, this communication
behaviour depends on n, which means that all cells will be different. Moreover, each

cell needs a mechanism to detect that the nth communication along input channel
a has occurred. This dependence on n makes the cells unnecessary complicated.

These complications can be avoided as follows. We decompose the problem into the
design of a simple head cell and a remaining array of cells (see, e.g., Fig. l) of which cell

N satisfies the following adapted specification:

(2)

where aN(i) = a(i) for all i ~ 0. Since bN(i) depends on segment aN [i - N .. i), a simple
communication behaviour such as (bN; aN)* is now possible for cell N. Note also that
nothing is specified about values b(O) through b(N - 1); this will be exploited in the
design of the remaining array of cells.

Given specification (2) for cell N, a program for the original problem, as specified by
(1), is obtained by neglecting the first N outputs of cell N. This is exactly what the head
cell does, and it is denoted as follows in our program notation:

I [var x: Type;w: Boo!;
(a?x, bN?w;aN!x)N

;(a?x, bN ?w;aN!x, b!w)*

J 1.

For this program the following explanation is in order. The block, delineated by
I [and] I, consists of a declaration part (introducing local variables x and w) and
a command. Commands are denoted in a CSP-like notation [2]. In particular, this
means that for channel c directed from cell m to cell n and expression E, say, the
simultaneous execution of c!E in cell m and c?x in cell n establishes the assignment
x := E in cell n. The comma indicates arbitrary interleaving of the commands connec
ted by it (and it takes precedence over the semicolon). The semicolon denotes
sequential composition, '*' denotes infinite repetition of commands, and •N' denotes

Fig. 1. Parallel program for palindrome recognition (N even).

J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (1996) I 19-137 123

a repetition of N times. The communication behaviour of the above program is:

and the external communication behaviour, obtained by omitting the communica
tions along channels aN and bN is:

3. Recognition of palindromes

In this section we derive a systolic array that recognizes palindromes using design

techniques similar to those in [3, 4, 9, 10]. In Section 5, this program will be compared

to the instantiation of the program scheme derived in Section 4.2. The specific way the

systolic array is designed is chosen to facilitate the comparison of Section 5, and also

to prepare for Section 4; there are no essential differences with known solutions for

palindrome recognition.

3.1. Spec~fication

A palindrome is a sequence that is identical to its reverse. For example, xyzyx is

a palindrome. The idea of palindrome recognition is to move a window of length N,

N ~ 0, over the input sequence of the program, and to output for each position of the

window whether the enclosed sequence is a palindrome. Formally, this is specified by

the following instantiation of (1):

b(i) = ('i/j:O ~ j < N:a(i + j) = a(i + N - 1 - j)), i ~ 0.

Since this will be convenient for the comparison in Section 5, we rewrite this

specification as follows and we will assume that N is even (there is no essential

difference between this case and the case that N is odd):

b(i) = ('i/j:N/2 ~j < N:a(i + j) = a(i + N - 1 - j)), i ~ 0. (3)

Our goal is to derive a linear array of cells of which the head cell satisfies (3).

Neighbouring cells are connected by channels, along which input values or intermedi

ate results are communicated (see Fig. 1).
As explained in the previous section, we split off a head cell such that the design of

an array satisfying (cf. (2) and (3))

remains. Here, aN(i) = a(i) for all i ~ O; that is, sequence a is fed to cell N via input

channel aN.

124 J.-P. Katoen, B. Schoenmakers /Science o.l Computer Programming 27 (1996) J /9~137

3.2. Program design

We generalize (4) by replacing constant N by variable n as follows. The problem is
divided into the design of N/2 + 1 cells, where cell n establishes the following
appropriate specification (N/2 ~ n ~ N):

bn(i) = ('t-fj:N/2 ~ j < n:an (i + j - n) = an(i + N - 1 - j - n)), i ~ 2n - N. (5)

Clearly, the output of cell N solves (4). For the input channels an of the cells we have
that a"(i) = a(i) for i;::: 0, which is easily achieved by passing values received along
channel an to cell n - 1 along channel an_ 1, that is, a,._, (i) = a,.(i) for i ~ 0. As these
relations hold for all cells, we will often write a(i) instead of a,.(i) in the sequel.

The derivation now proceeds by establishing a recurrence relation for the outputs
bn. For cell N/2, we have bN12 (i) =true for i;::: 0, so we proceed with cells n,
N/2 < n ~ N. For these cells, we derive for i + 1 ~ 2n - N:

b11 (i+ 1)
{ (5)}

(Vj:N/2 ~ j < n:a(i + 1 + j - n) = a(i + 1 + N - 1 -.i- n))
{split off j = n - 1}

a (i) = a (i + N + 1 - 2n) !\

('dj:N/2 ~j < n - 1 :a(i + j - (n - 1)) = a(i + N - 1 - j - (n - 1)))
{(5), using i + 1 ~ 2n - N, hence i;::: 2(n - 1) - N}

a (i) = a (i + N + 1 - 2n) !\ b,, - 1 (i).

So, cell n uses the output values of cell n - 1 to establish (5). Using that values b,,(i),
0 ~ i < 2n - N are not specified, we obtain the following recurrence relations for cell
n (N /2 < n ~ N):

an - 1 (i) = a,. (i) (= a (i)), i ~ 0

b11 (i) =·arbitrary', 0 ~ i < 2n - N

b11 (i + I) = a (i) = a (i + N + 1 - 2n) !\ b,, _ i(i), i ;::: 2n - N - 1.

The next step is to determine a communication behaviour that conforms to the
above relations and in which each output value depends only on the values received
last, thus requiring minimal storage. A possible solution is:

Using this communication behaviour, cell n has a(i) and b,. _ 1 (i) at its disposal for the
computation of b,.(i + 1). To provide a(i + N + 1 - 2n) we have several options (note
that N + 1 - 2n < 0, since N /2 < n). A simple solution is to buffer the last
2n - N - 1 values received along a,. in each component, but this solution is rejected
because it makes the cells too bulky - the resulting space complexity of the program

J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (1996) 119-137 125

would be 0 (N 2). In order to avoid this buffering, the idea is to equip each cell n,

N /2 < n ::;::; N, with an additional input channel Cn- l satisfying:

Cn- i(i) = a(i + N + 1 - 2n), i ~ 2n - N - 1.

Then bn(i + l) = a(i) = C11 -di) /\ bn- 1 (i), for i ~ 2n - N - 1. As c,,(i) = c,,_i(i- 2)

for sufficiently large i, channel c,,_ 1 is directed from cell n - 1 to cell n. The intercon

nection pattern of the network of cells is depicted in Fig. 1.
So, channel c,, is an output channel that has to be satisfied by cell n. The

specification for this channel is given by:

c,,(i) = a(i + N - 1 - 2n), i ~ 211 - N + 1. (6)

This output will be paired with output along channel b11 • The resulting communica

tion behaviours are as follows. For cell N/2 we have (bN12 ,cN12 ;aN12)*. For cell 11,

N /2 < /1 < N, we have

(7)

Notice the alternation of input and output actions. The communication behaviour of

cell N is obtained from (7) by omitting the communications along cN. Since the

communication behaviours of neighbouring cells match, it can be inferred that the

program is deadlock-ji-ee (see [9, 12]).

It remains to state the recurrence relations for channel c,,. For cell N/2 we may take

cN12 (0) ='arbitrary' and cN12 (i) = a(i - 1) for i ~ 1, which is easily accommodated.

And, for cell n, N /2 < /1 < N, it follows from (6) that c11 (i) = c,, - l (i - 2) for

i ~ 2n - N + 1. For 0::;::; i < 2n - N + 1, we have c"(i) ='arbitrary'.

The programs are obtained by integrating the communication behaviour and the

recurrence relations found. This yields the following program for cell N /2:

I [var x:Type;

(h N; 2 !true,c Nt 2!x;aN12 ?x)*

and for cell n, N/2 < /1 < N:

I [var x,y,z:Type;w: Boo!;

h11 !W,Cn!Z

J 1,

;(an?x,bn-1 ?w,c11 -1 ?y
;a,,_ 1!x,b"!(x = y /\ w),c11 !z

;z:= Y
)*

and for cell N:

I [var x,y: Type;w: Boo!;

bN!W

126 J.-P. Katoen, B. Schoenmakers / Science of Computer Programming 2 7 (1996) 1I9-13 7

J 1.

;(a'l?x,h.rv- 1 ?w,C.rv- i? Y
:a.-.- 1!x,hs!(x = y Aw)

)*

3.3. Pe1formance analysis

For the analysis of the time-efficiency of our parallel programs we use sequence
functions [9, 12]. A sequence function exhibits a possible execution order by assigning
all communications to time slots, where it is assumed that all events last exactly one
time slot. In this way, an upper bound is obtained on the number of slots that is
needed for a particular communication to occur.

For the above program, we introduce a sequence function CJ for which O"n(a,,, i)
denotes the time slot to which the (i + l)st communication along channel an of cell n is
assigned. A sequence function is correct if for any channel c connecting cells m and n,
say, the equality am(c, i) = CJ,,(c, i) holds for all i ~ 0. 2 For instance, the sequence
function for channels a,, and b,, is given by

O'n(an, i) = 2i + l + N - n

O'n(b,,, i) = 2i + N - n,

for N/2:::::; 11 :::::; N.
In terms of sequence functions, concepts like response time and latency can be made

explicit. The response time of a parallel program is defined as the number of time slots
between two successive external communications. It can be verified using the above
sequence functions that the program for palindrome recognition has constant re
sponse time, that is, the response time is independent of N, the size of the array of cells.
Similarly, latency is defined as the number of time slots between the production of an
output value and the receipt of the last input value on which this output value
depends. In our program b(i) depends on a [i - N .. i), and therefore it follows from
the above sequence functions that the program has constant latency:
av(b.rv, i) - aN(aN, i - l) = l.

As the number of local variables per cell is constant, the space complexity of the
program is O(N). Note that this is mainly due to the introduction of the auxiliary
channels between neighbouring cells.

4. Program schemes

In this section we design several program schemes that solve (2). We apply the
design technique as exemplified in the previous section.

2 For this reason it usually suffices to write CJ instead of CJ,,. However, in our calculations in Section 4 we
need to distinguish between CJ"' (c, i) and CJ,(c, i).

J-P. Katoen, B. Schoenmakers / Science of Compu1er Programming 2 7 (19%) 119·-13 7 127

As a first step in the design we generalize (2) by replacing constant N by variable

n (0 :::;;; n :::;; N). In this way, the problem is divided into the design of N + 1 cells,

where output h,, of cell n satisfies

b,Ji) = (Vj:O :::;;j < n:a11 (i + j - n) = a,,(i + P; - n)), i?: n, (8)

and the inputs along channel a,, satisfy a,,(i) = a(i), for i:;:: 0. (Because of this relation,

we will write a instead of a,, where appropriate.) The latter relation is easily achieved

by passing the a-values received along a,, to cell n - 1: a,,_ 1 (i) = a,,(i). The output

values of cell N now solve (2).

The derivation proceeds by deriving relations from (8) that express how cell

n computes its output values from other values. It is immediate that b0 (i) =true for

i ?: 0, and for i + 1 ?: n ?: 1 we derive

b,,(i + 1)

{(8)}
(Vj:O :::;;j < n:a(i + 1 + j - n) = a(i + 1 +Pi - n))

{split offj = n - 1; let D 11 = n -1 - P11 -d
a(i) = a(i - D,,)

/\ (Vj:O :::;;j < n - 1 :a(i + j - (n - 1)) = a(i +Pi - (n - 1)))

{ (8), using i ?: n - l}
a(i) = a(i - D,,) /\ b,,-1 (i).

In case D,, < 0, a (i - D,,) has not yet been received by cell n, and, consequently, (b,,;a 11)*

is not a possible communication behaviour for all cells. The following observation

helps us out, though. The right-hand side of the original specification (1) can be

transformed as follows:

(Vj:O :::;;j < N:a(i + j) = a(i + P;))

{domain split}
(Vj:O :::;;j <NAP;> j:a(i + j) = a(i + Pj)) /\

(Vj:O :::;;j <NA Pi= j:a(i + j) = a(i + P;)) A

(Vj:O:::;;; j < N /\Pi <j:a(i + j) = a(i + P;))

{dummy changej:= pi-I in first conjunct; calculus}

(Vj: 0 :::;;; Pj 1 < N A j > Pj 1 : a (i + pi- 1) = a (i + j)) A

(Vj:O :::;;j < N /\Pi <j:a(i +j) = a(i +Pi))

{ P ·- 1 is a permutation on [O .. N) l
(Vj:O :::;;j <NA pi-i <j:a(i + j) = a(i + pj- 1)) /\

(Vj:O ~j < N /\Pi <j:a(i + j) = a(i + P;)).

So the original problem may be solved by solving two identical - but simpler

problems: because p- 1 is as arbitrary as P, it suffices to design cells establishing for

i;:;:: n (cf. (8)):

b,,(i) = (Vj:O :::;;j < n /\ P; <j:a(i + j- n) = a(i +Pi - n)), (9)

which enables (b,,;a,,)* as (partial) communication behaviour for all cells.

128 J.-P. Katoen. B. Schoenmakers /Science of Computer Programming 27 (1996) 119-137

Proceeding as above we obtain the following relations for n > 0:

an- i(i) = a.(i)

b.(11 + 1) =(D.> 0 => a.(i) = a.(i - D11)) /\ bn-1 (i).

Note that a(i - D11) is required for the computation of b11 (i + 1) only if Dn > 0, which
ensures that this value has already been received by cell 11 and has been passed on to
cell 11 - 1 in the mean time. The remaining problem is to ensure that a(i - D11) is
available to cell n at the right moment.

4.1. A first solution

The simplest way to make a(i - D11) available to cell n is to buffer the last N values
received along a in each cell, but this makes the cells too bulky. In the solutions to
several instances of (1) - like the palindrome recognition problem of Section 3 - the
'old' a-value is retrieved (indirectly) from cell n - 1 by introducing auxiliary channels
between neighbouring cells. Since D11 > 0, a first guess is to equip cell n with an extra
input channel c11 _ 1 such that c11 _ 1 (i) = a(i - D11) in case D11 > 0. We would then have

b.(i + 1) = (D11 > 0 => a(i) = c.-di)) /\ b11 _i(i).

Unfortunately, it is impossible to compute c.(i) = a(i- D11 +il from, say, c._ 1(i- 1)
in this way, since we do not have a relation between D11 + 1 and D11 • The fact that we are
dealing with an arbitrary permutation P forces us to introduce an array of output
channels C .. Noting that a(i - D11 + il = a(i + P. - n) and that D11 + 1 > 0 = P11 < n, an
appropriate specification for this array of channels is given by

C. [m](i) = a(i +Pm - n), Pm< n,

for 0 ~ m < N. Then we may choose (for n # 0):

{ a(i) Pm= n - 1
C.[m](i+l)= C11 ~ 1 [m](i), Pm#n-1,

or, equivalently:

C.[m](i+l)={a(i), . m=P;:_\
Cn-1 [m] (z), m # P.--\.

It is interesting to note that CN satisfies CN[m](i) = a(i +Pm - N) for 0 ~ m < N,
hence array C N(i) is a permutation of segment a [i - N .. i). Cell n can now compute
b.(i + 1) as follows:

b.(i + 1) =(D.> 0 = a(i) = C11 - 1 [n - l](i))" b._ 1 (i).

The computation of C.(i + 1) within a cell takes O(N) time when done sequentially. It
is however trivial to do this in parallel to achieve 0(1) time by decomposing the cell

J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (1996) 119--137 129

into N subcells. The problem with this solution is that it is very expensive, even more
when one realizes that we have to do all of the above for p- 1 as well. Summarizing, we
have derived a program with constant response time and constant latency at the
expense of an area quadratic in N (N cells consisting of N subcells each).

4.2. An e.fjicient program scheme

In the above solution auxiliary channels are introduced between neighbouring cells
only, as has been done in solutions to instances of the general problem. In order to
obtain a program of linear size we take a quite different approach and allow links
between cells that are arbitrarily far apart. For the necessary calculations, we will use
sequence functions.

Observe that a(i - D") has reached some cell k, k < n, at the time it is needed by cell

n. Our idea is to retrieve a (i - D") directly from cell k thereby a voiding the need for
buffers in both cells. More precisely, we add an auxiliary channel ck directed from cell
k to cell n (as illustrated by Fig. 2) and we determine k such that

ck(i) = a(i - D"),

for i ;:?; 0. For cell n (n > 0) we then have

an- i (i) = a,i(i)

bn (0) = 'arbitrary'

bn(i + 1) = (Dn > 0 ==> an(i) = cdi)) /\ hn-1U)

Cn(i) = an(i).

Now, a possible overall communication behaviour is

(10)

(11)

Unfortunately, this behaviour causes deadlock: cells are activated one by one in
a 'pass it on, neighbour!' fashion starting at cell N, but since cells n and k may be
arbitrarily far apart, cell k will initially not be ready to participate in a communication
along ck· As a solution to this problem we alter the communication behaviour of odd
numbered cells so as to activate all cells 'right from the start':

(12)

Fig. 2. Array of cells shown with two extra links.

130 J.-P. J.:atoen, B. Sdwenmakers 1 Science of Computer Programming 27 (1996) I 19-137

(In Section 4.3 we give another solution to this problem.) Obviously, communication
behaviours of neighbouring cells match and communication behaviours w.r.t. channel
ck match if and only if 11 - k is odd.

Since odd and even numbered cells are distinguished, we obtain two kinds of cells
that satisfv different relations. If n is even (n =f; 0) we take, in accordance with (11),
the relati;ns as found before. If n is odd we take, in accordance with (12),
an- I (i) = a11 (i - 1) for i;:?: 1, and we thus have

an- I (0) ='arbitrary'

b11 (0) = 'arbitrary'

b11 U + 1) = Wn > o =>a"(i) = cdil) /\ bn-di + 1)

c11 (0) =·arbitrary'

Given the relations for odd and even 11, we can now compute k such that (10) holds
and n - k is odd. Since the relations for odd and even numbered cells are different, we
distinguish the cases k is even (and n is odd) and k is odd (and n is even)_

If k is even, we have ak(i) = cdi), and, in order to avoid buffering in both cell n and
cell k, we want k to satisfy adi) = a11 (i - D11). From the relations above it can be
verified that ak(i) = a11 (i - (n - k + l)div2), using that 11 is odd. This gives rise to the
following equation fork:

k: D11 = (n - k + l)div2, (13)

For odd k, we have ak(i - 1) = ck(i), so we want k to satisfy: a.(i - 1) = a11 (i - D 11).

Now n is even and therefore a.(i - 1) = a 11 (i - 1 - (n - k) div 2). As equation fork we
thus obtain D11 = (n - k)div2 + 1, but, since n - k is odd, this equation is equivalent
to (13).

This gives rise to the following solution as a function of n:

kn = 2Pn - I - n + 3. (14)

Channel c is thus directed from cell kn to cell n, 1 ::;; n ::;; N. Using that D11 > 0, it
follows from (14) that - n + 3 ::;; kn < n. So k 11 may be negative, and therefore the
array of cells is extended with cells whose sole purpose is to buffer input values that
are to be returned via the c-connections (see also Fig. 3). These cells are programmed
as follows for n even and n odd, respectively (11 < 0):

I [var x: Type;
(a 11?x;a11 - 1!x,c11 !x)*

JI

I [var x:Type;
(an - 1 !x,c11!x;a11?x)*

J 1-

J.-P. Katoen, B. Schoenmakers I Science ol Computer Programming 27 (1996) I I 9-137 131

Fig. 3. Overview of the general solution.

Of course, there should be a last cell to end the array. As stated before, (1) is solved by

solving two identical problems (for P and its inverse). The index of the last cell in the

array is therefore given by

min(O, {kn 11:::; n:::; N /\ Dn > O}, Un 11:::; n:::; N /\En> O}), (15)

where En= n - 1 - P;:_\ and ln = 2P,;_\ - n + 3. The program for this cell is omit

ted.

For positive n we obtain the following programs. For n even:

I [var x, y, z: Type;w: Boo!;

bn!w

JI

;(an'?x,bn - 1 '?w,ck)y,c1,,?z
;an-1!X,bn!((Dn > 0 =x = y) /\(En> 0 =x = z) /\ w), Cn!X
)*

and, for n odd:

I [var x,y,z: Type;w: Boo!;

bn-1'?w

JI

;(an-1!x,bn!((Dn > 0 =x = y) /\(En> 0 =x = z) /\ w),l)x

;an'?x,bn-1'?w,ck"'?y,c1,,?z
)*

Finally, for n = 0 we find (assuming that cell 0 is not the last cell of the array):

I [var x: Type;
b0 !true;(a0?x;a _ 1 !x,b0 ! true,c0 !x)*

JI

The resulting programs can be simplified significantly by removing redundant chan

nels and/or cells. For example, input channel ck,, may be removed from cell n when

Dn < 0. Such simplifications will be applied and further explained in Section 5.

Like the solution from Section 4.1 this program has constant response time

and constant latency, but the attractive thing about this solution is that its size is

O(N).

I 32 J.-P. Katoen, B. Schoenmukers .! Science o(Computer Programming 27 (1996) 119-·137

4.3. Another ejjicient program scheme

In the previous section we have distinguished odd and even cells in order to avoid
deadlock. Deadlock could occur because cell k may initially be unable to engage in
a communication with cell /1 along channel ck. Another way to avoid such a deadlock
is therefore to avoid these initial communications along ck in cell n. To this end we
take a communication behaviour of the following form:

(16)

where t is determined such that cell k is able to communicate along(\. Note that hn(O)
through hn(t) have to be computed without the use of channel ck. Since it turns out
that t is smaller than /1 (see below), this is no problem: it is sufficient that relation (9)
holds for i ~ n, and therefore we may take arbitrary values for b11 (0) through b11 (t).

For the above communication behaviour we first determine an expression for kn,
the cell to which cell n is to be connected. We do this by means of sequence functions.
The relevant sequence functions for cell /1 are given by (cf. communication behaviour
(16)):

<1n(a11 ,i) = 2i + l + N - /1

0'11 (Cn,i) = 2i + 2 + N - /1

<1n(cbi) = 2t + 2i + l + N - n.

Since we want to have a(i) and a(i - D11) available in cell n in the same time slot, we
have the following equation for kn, using that ck,,(i) = a(i):

This equation has the same solution as Eq. (13):

k" = 2P11 _ 1 - /1 + 3.

Given this expression for kn we can now compute t. We determine t such that the
communication behaviours of cells /1 and kn match. As equation for t we obtain:

t: O'n(cbi) = ak,(ck,,,i),

for i ~ 0. Using the above sequence functions we find:

2t + 2i + 1 - N - /1 = 2i + 2 + N - k11

= {above relation for k,.; definition of D11 }

2t - /1 = 1 - (n + 1 - 2D,.)
= {algebra}

t = D 11 •

Since channel ck is only used in cells for which Dn > O holds, we immediately
have t > 0. Furthermore we have that t < /1 because P11 _ 1 ~ 0. Hence we have
O<t<n.

J.-P. Katoen, B. Schoenmakers j Science of' Computer Programming 27 (1996) 119-137 133

For p- i we obtain a similar communication behaviour, which can be 'merged' with
the communication behaviour for P.

The disadvantage of this solution is that the cells are not identical because the
length of the initialisation in cell n equals D11 , and thus depends on n. It shows,
however, how sequence functions can be used to calculate a deadlock-free commun
ication behaviour. This approach is new with respect to the approach advocated in
e.g. [3, 4, 9].

5. Comparison for palindrome recognition

In this section we generate a program for the palindrome recognition problem by
instantiating the program scheme for arbitrary P from Section 4.2. Subsequently, the
program thus obtained is compared with the one presented in Section 3. We assume
N to be sufficiently large. As in Section 3, we assume also that N is even.

As a first step, we observe that the permutation for the palindrome problem, given

by Pj = N - 1 -.i for 0 ~.i < N, is equal to its inverse. Consequently,
En > 0 = Dn > 0 and k 11 = In, and therefore we can simplify the general program
significantly by removing all channels c1,.

A further reduction is possible by observing that D11 > 0 is equivalent to
N - 1 - (n - 1) < n - 1 which may be simplified to n > N /2. This enables us to

remove input en from all cells n with 1 ~ n ~ N/2. For N/2 < n ~ N we have
Pn- i = N - n, so we obtain (cf. (14)): k11 = 2N - 3n + 3. Since D11 > 0 = N/2 < n, it
follows from (15) that the last cell has number - N + 3, and moreover that all output
channels c11 may be removed from cells n with nrf=[2N - 3n + 31 N/2 < n ~ N}.

Since D11 < 0 holds for 0 < n ~ N /2 and b0 (i} = true, we have b,, (i) = true for all
these cells, and therefore we can remove the b-channels from cells 0 through N /2 - 1
and let cell N/2 generate sequence b. Fig. 4 gives an impression of the linear network

thus obtained; it consists of 2N - 2 cells.
To obtain a program comparable with the program from Section 3 we integrate

cells in the following way. Cells N and N/2 are kept the same and become the first cell

' --- --- --- - _., ---. -.,. ~-- ~- _.,. ...
: a

N/2+2 :
b

a a: a
-N+3 N/2

Fig. 4. Instantiation of program scheme for palindrome recognition.

J 34 J. -P. Katoen, B. Schoenmakers / Science of Computer Programming 2 7 (1996) 119-13 7

and last cell of the array, respectively. The other cells are integrated in groups of four
cells as indicated in Fig. 4. The integrated cells are connected by three channels, called
a, b, and c.

This results in the following programs. For cell N:

I [var x,y:Type;w: Boo!;
bN!W

JI.

;(aN?x,bN- l'?w,CN-1 ?y
;a,..,_ 1 !x,bN!(x = y I\ w)
)*

For cells n, N < n < N/2 and n even:

I [var x,y,z: Type;w: Boo!;
bn!w

JI,

;(an?x,bn- 1 ?w,Cn-1 ?y
;an_ 1!x,bn!(x = y I\ w),cn!z
;z:= y
)*

and, for n odd:

I [var x,y,z: Type;w: Boo!;
bn-1 ?w

] 1.

;(an-1!X,bn!(x = y I\ w),cn!z
;z:= y
;an ?x,bn-1'?w,Cn-1? Y
)*

Finally, cell N/2 generates true's along channel b (shown for the case that N /2 is even):

I [var x:Type;
bN12 !true
;(aN12 ?x;bN12 !true,cN12 ! x)*

J 1.

Apart from the fact that all cells are active 'right from the start' - performing dummy
actions initially - this program is equivalent to the program presented in Section 3.

6. How to avoid broadcast channels

It should be noted that, depending on permutation P, instantiations of the program
scheme from Section 4.2 may contain broadcast channels. Take, for example, the

J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (1996) l 19-137 135

perfect-shuffle permutation introduced in Section 1. Its inverse is given by
pj- 1 = K (jmod 2) + j div 2, for 0 ~ j < 2K. If n is odd we have P,;-_\ = (n - 1)/2, so it
immediately follows that En= n - 1 - P,;--1 1 is positive for n > 1. We then obtain
l" = 2P,;-_\ - n + 3 = 2 for all odd n larger than one, which means that all these cells
are connected to cell 2. In other words, cell 2 'broadcasts' the same a-value to all these
cells. (In [6] a systolic program for perfect-shuffle recognition is derived. In that
solution the computation is organized such that only a small number of cells need the
same a-value in the same time slot. This program is outside the scope of the approach
presented in this paper.)

The above problem is a direct consequence of the fact that we distinguished odd
and even numbered cells to guarantee absence of deadlock. This problem can be
solved by starting the cells in a different way. For instance, by distinguishing cells
modulo 3 we get the following equation for kn:

kn = 3Pn- I - 2n + 5,

and it can be verified that instantiation with the perfect-shuffle permutation no longer
results in a program with broadcast. In this way, systolic solutions can be derived for
many more permutations, such as the PK.L permutations introduced in [6]. These are
defined by

PK.d.i) = K(jmodL) + jdivL, 0 ~j ~KL,

for K > 0 and L > 0, and enjoy the property that

7. Concluding remarks

Typical for the 'linear array' solutions to several instances of the general recognition
problem [5, 9, 8, 11, 12] is that at some stage in the design auxiliary channels are
introduced between neighbouring cells to carry input values (to the program) indirect
ly via a chain of neighbouring cells to the right cell at the right moment. We have
shown in Section 4.1 that this approach forces us to introduce an array of auxiliary
channels, resulting in programs of a size quadratic in N. To obtain programs oflinear
size, a quite different approach is taken in Section 4.2, in which an (input) value is
directly retrieved from the cell that received that value just before. Although this
requires that cells are connected that may be arbitrarily far apart, the need for
buffering in these cells is completely avoided. Depending on P, the array of cells is
extended with a number of extra cells whose sole purpose is to buffer input values that
are to be returned via the feedback links.

To ensure the feasibility of the above approach, we first transformed the problem
of recognizing ?-invariant segments into two simpler problems involving P and
p- 1• Another problem that had to be solved was the design of a deadlock-free

136 J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (1996) 119-137

communication behaviour. We have chosen to let the communication behaviours of
odd and even numbered cells alternate so as to activate all cells 'right from the start'
- performing dummy actions initially. We have also shown that it is possible to avoid
these initial communications altogether, the drawback of this solution being that the
cells of the resulting program have a more complicated initialisation.

Using our program schemes, it is rather straightforward to construct parallel
programs for instances of P. For some concrete cases the resulting program can be
transformed into the more 'linear array' solutions. This was illustrated for the
palindrome recognition problem. Depending on the particular permutation P, how
ever, there may be simpler ways to construct an efficient solution. For instance, the
problem of square recognition, specified by (1) with Pi= (j + K) mod N and N = 2K,
can be solved simply and efficiently if one starts with the following equivalent
specification:

b(i) = (#j:O ~j < K:a(i + j) = a(i + j + K)) = K, i ~ 0. (17)

A still more efficient solution results by rewriting the specification as:

b(i) = min{kl - i ~ k <KA (Vj:k ~j < K:a(i + j) = a(i + j + K))} ~ 0. (18)

Similar approaches are applicable to the problem of recognizing K-rotations [5].
Finally, we would like to stress that we have applied the notion of sequence

functions in a new way. That is, we have not only used sequence functions to analyze
the performance of systolic arrays a posteriori, but we have used these functions
already in the design of the program to guarantee that specific performance require
ments are met a priori.

Acknowledgements

Wim Kloosterhuis is gratefully acknowledged for his suggestion to avoid broadcast
for a large class of permutations, e.g., by distinguishing cells modulo 3 (see Section 6).
Also, we would like to thank Anne Kaldewaij for pointing out to us that the square
recognition problem can be solved simply and efficiently by rewriting the specification
as (17). Finally, we thank an anonymous referee for showing that this problem can be
solved even more efficiently by rewriting the specification as (18) and also for useful
remarks regarding the presentation.

References

[1) K.M. Chandy and J. Misra, Systolic algorithms as programs, Distributed Computing I (1986) 177-183.
[2) C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (1978) 666-677.
[3) A. Kaldewaij and M. Rem, The derivation of systolic computations, Sci. Comput. Programming 14

(1990) 229-242.

[4) A. Kaldewaij and J.T. Udding, Rank order filters and priority queues, Distributed Computing 6 (1992)
99-105.

J.-P. Katoen, B. Schoenmakers /Science of Computer Programming 27 (1996) 119-137 137

[5] J.-P. Katoen and M. Rem, Recognizing K-rotated segments, lnternat. J. High Speed Computing
5 (1993) 293-305.

[6] J.-P. Katoen and B. Schoenmakers, Recognizing perfect-shuffles, in: J.P. Katoen, Case Studies in
Ca/culationa/ Program Design (Eindhoven University of Technology, The Netherlands, 1989) 49-61.

[7] S.Y. Kung, VLSI Array Processors (Prentice Hall, Englewood Cliffs, 1988).
[8] P. Quinton and Y. Robert, Systolic Algorithms and Architectures (Prentice Hall, Englewood Cliffs,

1991).
[9] M. Rem, Trace theory and systolic computations, in: J.W. de Bakker et al., eds., PARLE'87: Parallel

Architectures and Languages Europe, Lecture Notes in Computer Science, Vol. 258 (Springer, Berlin,
1987) 14-33.

[10] P. Struik, Designing parallel programs of parameterized granularity, Ph.D. Thesis (Eindhoven
University of Technology, The Netherlands, 1992).

[11] J.L.A. van de Snepscheut and J.B. Swenker, On the design of some systolic algorithms, J. ACM 36
(1989) 826-840.

[12] G. Zwaan, Parallel computations, Ph.D. Thesis (Eindhoven University of Technology, The Nether
lands, 1989).

