26,842 research outputs found

    Quantum Spectra of Triangular Billiards on the Sphere

    Full text link
    We study the quantal energy spectrum of triangular billiards on a spherical surface. Group theory yields analytical results for tiling billiards while the generic case is treated numerically. We find that the statistical properties of the spectra do not follow the standard random matrix results and their peculiar behaviour can be related to the corresponding classical phase space structure.Comment: 18 pages, 5 eps figure

    Spectral fluctuations and 1/f noise in the order-chaos transition regime

    Full text link
    Level fluctuations in quantum system have been used to characterize quantum chaos using random matrix models. Recently time series methods were used to relate level fluctuations to the classical dynamics in the regular and chaotic limit. In this we show that the spectrum of the system undergoing order to chaos transition displays a characteristic fγf^{-\gamma} noise and γ\gamma is correlated with the classical chaos in the system. We demonstrate this using a smooth potential and a time-dependent system modeled by Gaussian and circular ensembles respectively of random matrix theory. We show the effect of short periodic orbits on these fluctuation measures.Comment: 4 pages, 5 figures. Modified version. To appear in Phys. Rev. Let

    An analysis of the transient behavior of infiltrated tungsten composites including the effect of the melt layer Final report

    Get PDF
    Transient one dimensional heat transfer analysis of infiltrated tungsten composite

    Nodal domain distributions for quantum maps

    Full text link
    The statistics of the nodal lines and nodal domains of the eigenfunctions of quantum billiards have recently been observed to be fingerprints of the chaoticity of the underlying classical motion by Blum et al. (Phys. Rev. Lett., Vol. 88 (2002), 114101) and by Bogomolny and Schmit (Phys. Rev. Lett., Vol. 88 (2002), 114102). These statistics were shown to be computable from the random wave model of the eigenfunctions. We here study the analogous problem for chaotic maps whose phase space is the two-torus. We show that the distributions of the numbers of nodal points and nodal domains of the eigenvectors of the corresponding quantum maps can be computed straightforwardly and exactly using random matrix theory. We compare the predictions with the results of numerical computations involving quantum perturbed cat maps.Comment: 7 pages, 2 figures. Second version: minor correction

    Nonclassical Degrees of Freedom in the Riemann Hamiltonian

    Full text link
    The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum hamiltonian. If so, conjectures by Katz and Sarnak put this hamiltonian in Altland and Zirnbauer's universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros.Comment: 4 pages, no figures; v3-6 have minor corrections to v2, v2 has a more complete solution of the sign problem than v

    The Edge of Quantum Chaos

    Full text link
    We identify a border between regular and chaotic quantum dynamics. The border is characterized by a power law decrease in the overlap between a state evolved under chaotic dynamics and the same state evolved under a slightly perturbed dynamics. For example, the overlap decay for the quantum kicked top is well fitted with [1+(q1)(t/τ)2]1/(1q)[1+(q-1) (t/\tau)^2]^{1/(1-q)} (with the nonextensive entropic index qq and τ\tau depending on perturbation strength) in the region preceding the emergence of quantum interference effects. This region corresponds to the edge of chaos for the classical map from which the quantum chaotic dynamics is derived.Comment: 4 pages, 4 figures, revised version in press PR

    Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property

    Full text link
    The intrinsic anomalous Hall effect in metallic ferromagnets is shown to be controlled by Berry phases accumulated by adiabatic motion of quasiparticles on the Fermi surface, and is purely a Fermi-liquid property, not a ``bulk'' Fermi sea property like Landau diamagnetism, as has been previously supposed. Berry phases are a new topological ingredient that must be added to Landau Fermi-liquid theory in the presence of broken inversion or time-reversal symmetry.Comment: 4 pages, 0 figures; to appear in Physical Review Letters; cleaner form of main formula+note added confirming continued validity of result in interacting Fermi liquids: + improved summary paragraph stating result; final published version (minor changes

    Fluctuations of wave functions about their classical average

    Full text link
    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations that quantum mechanical wave functions present around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes. We compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators. The expectation is broadly confirmed, but deviations due to scars are observed.Comment: 9 pages, 6 figures. Sent to J. Phys.

    Separating the regular and irregular energy levels and their statistics in Hamiltonian system with mixed classical dynamics

    Full text link
    We look at the high-lying eigenstates (from the 10,001st to the 13,000th) in the Robnik billiard (defined as a quadratic conformal map of the unit disk) with the shape parameter λ=0.15\lambda=0.15. All the 3,000 eigenstates have been numerically calculated and examined in the configuration space and in the phase space which - in comparison with the classical phase space - enabled a clear cut classification of energy levels into regular and irregular. This is the first successful separation of energy levels based on purely dynamical rather than special geometrical symmetry properties. We calculate the fractional measure of regular levels as ρ1=0.365±0.01\rho_1=0.365\pm 0.01 which is in remarkable agreement with the classical estimate ρ1=0.360±0.001\rho_1=0.360\pm 0.001. This finding confirms the Percival's (1973) classification scheme, the assumption in Berry-Robnik (1984) theory and the rigorous result by Lazutkin (1981,1991). The regular levels obey the Poissonian statistics quite well whereas the irregular sequence exhibits the fractional power law level repulsion and globally Brody-like statistics with β=0.286±0.001\beta = 0.286\pm0.001. This is due to the strong localization of irregular eigenstates in the classically chaotic regions. Therefore in the entire spectrum we see that the Berry-Robnik regime is not yet fully established so that the level spacing distribution is correctly captured by the Berry-Robnik-Brody distribution (Prosen and Robnik 1994).Comment: 20 pages, file in plain LaTeX, 7 figures upon request submitted to J. Phys. A. Math. Gen. in December 199

    Persistent Currents in Quantum Chaotic Systems

    Full text link
    The persistent current of ballistic chaotic billiards is considered with the help of the Gutzwiller trace formula. We derive the semiclassical formula of a typical persistent current ItypI^{typ} for a single billiard and an average persistent current for an ensemble of billiards at finite temperature. These formulas are used to show that the persistent current for chaotic billiards is much smaller than that for integrable ones. The persistent currents in the ballistic regime therefore become an experimental tool to search for the quantum signature of classical chaotic and regular dynamics.Comment: 4 pages (RevTex), to appear in Phys. Rev. B, No.59, 12256-12259 (1999
    corecore