30,012 research outputs found
Geometric phases and anholonomy for a class of chaotic classical systems
Berry's phase may be viewed as arising from the parallel transport of a
quantal state around a loop in parameter space. In this Letter, the classical
limit of this transport is obtained for a particular class of chaotic systems.
It is shown that this ``classical parallel transport'' is anholonomic ---
transport around a closed curve in parameter space does not bring a point in
phase space back to itself --- and is intimately related to the Robbins-Berry
classical two-form.Comment: Revtex, 11 pages, no figures
Recommended from our members
Sand Penetration By High-Speed Projectiles
Tungsten projectiles were shot into sand at velocities between 600 and 2200 m/s. Penetration was maximum at about 775 m/s. Below that velocity, projectiles were apparently stabilized by a fin set. Above that velocity, projectiles were broken by transverse loads. High-speed penetration resulted in comminution of sand particles, reducing their size by about 1000 times.Mechanical Engineerin
Geometric gauge potentials and forces in low-dimensional scattering systems
We introduce and analyze several low-dimensional scattering systems that
exhibit geometric phase phenomena. The systems are fully solvable and we
compare exact solutions of them with those obtained in a Born-Oppenheimer
projection approximation. We illustrate how geometric magnetism manifests in
them, and explore the relationship between solutions obtained in the diabatic
and adiabatic pictures. We provide an example, involving a neutral atom dressed
by an external field, in which the system mimics the behavior of a charged
particle that interacts with, and is scattered by, a ferromagnetic material. We
also introduce a similar system that exhibits Aharonov-Bohm scattering. We
propose some practical applications. We provide a theoretical approach that
underscores universality in the appearance of geometric gauge forces. We do not
insist on degeneracies in the adiabatic Hamiltonian, and we posit that the
emergence of geometric gauge forces is a consequence of symmetry breaking in
the latter.Comment: (Final version, published in Phy. Rev. A. 86, 042704 (2012
Assessing the performance of protective winter covers for outdoor marble statuary: pilot investigation
Outdoor statuary in gardens and parks in temperate climates has a tradition of being covered during the winter, to protect against external conditions. There has been little scientific study of the environmental protection that different types of covers provide. This paper examines environmental conditions provided by a range of covers used to protect marble statuary at three sites in the UK. The protection required depends upon the condition of the marble. Although statues closely wrapped and with a layer of insulation provide good protection, this needs to be considered against the potential physical damage of close wrapping a fragile deteriorated surface
Nonclassical Degrees of Freedom in the Riemann Hamiltonian
The Hilbert-Polya conjecture states that the imaginary parts of the zeros of
the Riemann zeta function are eigenvalues of a quantum hamiltonian. If so,
conjectures by Katz and Sarnak put this hamiltonian in Altland and Zirnbauer's
universality class C. This implies that the system must have a nonclassical
two-valued degree of freedom. In such a system, the dominant primitive periodic
orbits contribute to the density of states with a phase factor of -1. This
resolves a previously mysterious sign problem with the oscillatory
contributions to the density of the Riemann zeros.Comment: 4 pages, no figures; v3-6 have minor corrections to v2, v2 has a more
complete solution of the sign problem than v
STUDIES ON ABLATION OF OBJECTS TRAVERSING AN ATMOSPHERE
Ablation-type thermal protection of objects traversing an atmosphere - earth and mar
Relations for classical communication capacity and entanglement capability of two-qubit operations
Bipartite operations underpin both classical communication and entanglement
generation. Using a superposition of classical messages, we show that the
capacity of a two-qubit operation for error-free entanglement-assisted
bidirectional classical communication can not exceed twice the entanglement
capability. In addition we show that any bipartite two-qubit operation can
increase the communication that may be performed using an ensemble by twice the
entanglement capability.Comment: 4 page
Level spacings and periodic orbits
Starting from a semiclassical quantization condition based on the trace
formula, we derive a periodic-orbit formula for the distribution of spacings of
eigenvalues with k intermediate levels. Numerical tests verify the validity of
this representation for the nearest-neighbor level spacing (k=0). In a second
part, we present an asymptotic evaluation for large spacings, where consistency
with random matrix theory is achieved for large k. We also discuss the relation
with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for
two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of
validity of asymptotic evaluation clarifie
Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions
Eigenvalues and eigenfunctions of Mathieu's equation are found in the short
wavelength limit using a uniform approximation (method of comparison with a
`known' equation having the same classical turning point structure) applied in
Fourier space. The uniform approximation used here relies upon the fact that by
passing into Fourier space the Mathieu equation can be mapped onto the simpler
problem of a double well potential. The resulting eigenfunctions (Bloch waves),
which are uniformly valid for all angles, are then used to describe the
semiclassical scattering of waves by potentials varying sinusoidally in one
direction. In such situations, for instance in the diffraction of atoms by
gratings made of light, it is common to make the Raman-Nath approximation which
ignores the motion of the atoms inside the grating. When using the
eigenfunctions no such approximation is made so that the dynamical diffraction
regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important
references to existing work on uniform approximations, such as Olver's method
applied to the modified Mathieu equation. It is emphasised that the paper
presented here pertains to Fourier space uniform approximation
- …