23,660 research outputs found

    Geometric gauge potentials and forces in low-dimensional scattering systems

    Full text link
    We introduce and analyze several low-dimensional scattering systems that exhibit geometric phase phenomena. The systems are fully solvable and we compare exact solutions of them with those obtained in a Born-Oppenheimer projection approximation. We illustrate how geometric magnetism manifests in them, and explore the relationship between solutions obtained in the diabatic and adiabatic pictures. We provide an example, involving a neutral atom dressed by an external field, in which the system mimics the behavior of a charged particle that interacts with, and is scattered by, a ferromagnetic material. We also introduce a similar system that exhibits Aharonov-Bohm scattering. We propose some practical applications. We provide a theoretical approach that underscores universality in the appearance of geometric gauge forces. We do not insist on degeneracies in the adiabatic Hamiltonian, and we posit that the emergence of geometric gauge forces is a consequence of symmetry breaking in the latter.Comment: (Final version, published in Phy. Rev. A. 86, 042704 (2012

    Nonclassical Degrees of Freedom in the Riemann Hamiltonian

    Full text link
    The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum hamiltonian. If so, conjectures by Katz and Sarnak put this hamiltonian in Altland and Zirnbauer's universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros.Comment: 4 pages, no figures; v3-6 have minor corrections to v2, v2 has a more complete solution of the sign problem than v

    Semi-classical calculations of the two-point correlation form factor for diffractive systems

    Full text link
    The computation of the two-point correlation form factor K(t) is performed for a rectangular billiard with a small size impurity inside for both periodic or Dirichlet boundary conditions. It is demonstrated that all terms of perturbation expansion of this form factor in powers of t can be computed directly by semiclassical trace formula. The main part of the calculation is the summation of non-diagonal terms in the cross product of classical orbits. When the diffraction coefficient is a constant our results coincide with expansion of exact expressions ontained by a different method.Comment: 42 pages, 10 figures, Late

    Level spacings and periodic orbits

    Full text link
    Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit formula for the distribution of spacings of eigenvalues with k intermediate levels. Numerical tests verify the validity of this representation for the nearest-neighbor level spacing (k=0). In a second part, we present an asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for large k. We also discuss the relation with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of validity of asymptotic evaluation clarifie

    Entanglement-enhanced measurement of a completely unknown phase

    Full text link
    The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc

    A Class of Parameter Dependent Commuting Matrices

    Get PDF
    We present a novel class of real symmetric matrices in arbitrary dimension dd, linearly dependent on a parameter xx. The matrix elements satisfy a set of nontrivial constraints that arise from asking for commutation of pairs of such matrices for all xx, and an intuitive sufficiency condition for the solvability of certain linear equations that arise therefrom. This class of matrices generically violate the Wigner von Neumann non crossing rule, and is argued to be intimately connected with finite dimensional Hamiltonians of quantum integrable systems.Comment: Latex, Added References, Typos correcte

    Caustics in turbulent aerosols

    Full text link
    Networks of caustics can occur in the distribution of particles suspended in a randomly moving gas. These can facilitate coagulation of particles by bringing them into close proximity, even in cases where the trajectories do not coalesce. We show that the long-time morphology of these caustic patterns is determined by the Lyapunov exponents lambda_1, lambda_2 of the suspended particles, as well as the rate J at which particles encounter caustics. We develop a theory determining the quantities J, lambda_1, lambda_2 from the statistical properties of the gas flow, in the limit of short correlation times.Comment: 4 pages, 3 figure

    Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions

    Get PDF
    Eigenvalues and eigenfunctions of Mathieu's equation are found in the short wavelength limit using a uniform approximation (method of comparison with a `known' equation having the same classical turning point structure) applied in Fourier space. The uniform approximation used here relies upon the fact that by passing into Fourier space the Mathieu equation can be mapped onto the simpler problem of a double well potential. The resulting eigenfunctions (Bloch waves), which are uniformly valid for all angles, are then used to describe the semiclassical scattering of waves by potentials varying sinusoidally in one direction. In such situations, for instance in the diffraction of atoms by gratings made of light, it is common to make the Raman-Nath approximation which ignores the motion of the atoms inside the grating. When using the eigenfunctions no such approximation is made so that the dynamical diffraction regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important references to existing work on uniform approximations, such as Olver's method applied to the modified Mathieu equation. It is emphasised that the paper presented here pertains to Fourier space uniform approximation

    Fluctuations of wave functions about their classical average

    Full text link
    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations that quantum mechanical wave functions present around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes. We compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators. The expectation is broadly confirmed, but deviations due to scars are observed.Comment: 9 pages, 6 figures. Sent to J. Phys.
    • …
    corecore