1,542 research outputs found

    Efficient Algorithms for Universal Quantum Simulation

    Full text link
    A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely approximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed

    Superoscillations and tunneling times

    Get PDF
    It is proposed that superoscillations play an important role in the interferences which give rise to superluminal effects. To exemplify that, we consider a toy model which allows for a wave packet to travel, in zero time and negligible distortion a distance arbitrarily larger than the width of the wave packet. The peak is shown to result from a superoscillatory superposition at the tail. Similar reasoning applies to the dwell time.Comment: 12 page

    Temporal Talbot effect in interference of matter waves from arrays of Bose-Einstein condensates and transition to Fraunhofer diffraction

    Full text link
    We consider interference patterns produced by coherent arrays of Bose-Einstein condensates during their one-dimensional expansion. Several characteristic pattern structures are distinguished depending on value of the evolution time. Transformation of Talbot ``collapse-revival'' behavior to Fraunhofer interference fringes is studied in detail.Comment: 11 pages, 4 figures; misprints correcte

    Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps

    Full text link
    An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jumpwise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation parameter takes its maximum value.Comment: 33 pages, 8 figures, submitted to PRA on 28 Oct. 200

    On the relationship between continuous- and discrete-time quantum walk

    Full text link
    Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.Comment: 22 pages. v2: improved presentation, new section on Hamiltonian oracles; v3: published version, with improved analysis of phase estimatio

    Coherent oscillations and incoherent tunnelling in one - dimensional asymmetric double - well potential

    Full text link
    For a model 1d asymmetric double-well potential we calculated so-called survival probability (i.e. the probability for a particle initially localised in one well to remain there). We use a semiclassical (WKB) solution of Schroedinger equation. It is shown that behaviour essentially depends on transition probability, and on dimensionless parameter which is a ratio of characteristic frequencies for low energy non-linear in-well oscillations and inter wells tunnelling. For the potential describing a finite motion (double-well) one has always a regular behaviour. For the small value of the parameter there is well defined resonance pairs of levels and the survival probability has coherent oscillations related to resonance splitting. However for the large value of the parameter no oscillations at all for the survival probability, and there is almost an exponential decay with the characteristic time determined by Fermi golden rule. In this case one may not restrict oneself to only resonance pair levels. The number of perturbed by tunnelling levels grows proportionally to the value of this parameter (by other words instead of isolated pairs there appear the resonance regions containing the sets of strongly coupled levels). In the region of intermediate values of the parameter one has a crossover between both limiting cases, namely the exponential decay with subsequent long period recurrent behaviour.Comment: 19 pages, 7 figures, Revtex, revised version. Accepted to Phys. Rev.

    Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci

    Get PDF
    Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved molecular patterns expressed by pathogens. Pneumolysin, an intracellular toxin found in all Streptococcus pneumoniae clinical isolates, is an important virulence factor of the pneumococcus that is recognized by TLR4. Although TLR2 is considered the most important receptor for Gram-positive bacteria, our laboratory previously could not demonstrate a decisive role for TLR2 in host defence against pneumonia caused by a serotype 3 S. pneumoniae. Here we tested the hypothesis that in the absence of TLR2, S. pneumoniae can still be sensed by the immune system through an interaction between pneumolysin and TLR4. C57BL/6 wild-type (WT) and TLR2 knockout (KO) mice were intranasally infected with either WT S. pneumoniae D39 (serotype 2) or the isogenic pneumolysin-deficient S. pneumoniae strain D39 PLN. TLR2 did not contribute to antibacterial defence against WT S. pneumoniae D39. In contrast, pneumolysin-deficient S. pneumoniae only grew in lungs of TLR2 KO mice. TLR2 KO mice displayed a strongly reduced early inflammatory response in their lungs during pneumonia caused by both pneumolysin-producing and pneumolysin-deficient pneumococci. These data suggest that pneumolysin-induced TLR4 signalling can compensate for TLR2 deficiency during respiratory tract infection with S. pneumoniae

    Zeta Function Zeros, Powers of Primes, and Quantum Chaos

    Full text link
    We present a numerical study of Riemann's formula for the oscillating part of the density of the primes and their powers. The formula is comprised of an infinite series of oscillatory terms, one for each zero of the zeta function on the critical line and was derived by Riemann in his paper on primes assuming the Riemann hypothesis. We show that high resolution spectral lines can be generated by the truncated series at all powers of primes and demonstrate explicitly that the relative line intensities are correct. We then derive a Gaussian sum rule for Riemann's formula. This is used to analyze the numerical convergence of the truncated series. The connections to quantum chaos and semiclassical physics are discussed

    Entangling power and operator entanglement in qudit systems

    Full text link
    We establish the entangling power of a unitary operator on a general finite-dimensional bipartite quantum system with and without ancillas, and give relations between the entangling power based on the von Neumann entropy and the entangling power based on the linear entropy. Significantly, we demonstrate that the entangling power of a general controlled unitary operator acting on two equal-dimensional qudits is proportional to the corresponding operator entanglement if linear entropy is adopted as the quantity representing the degree of entanglement. We discuss the entangling power and operator entanglement of three representative quantum gates on qudits: the SUM, double SUM, and SWAP gates.Comment: 8 pages, 1 figure. Version 3: Figure was improved and the MS was a bit shortene
    corecore