759 research outputs found
Universal Cubic Eigenvalue Repulsion for Random Normal Matrices
Random matrix models consisting of normal matrices, defined by the sole
constraint , will be explored. It is shown that cubic
eigenvalue repulsion in the complex plane is universal with respect to the
probability distribution of matrices. The density of eigenvalues, all
correlation functions, and level spacing statistics are calculated. Normal
matrix models offer more probability distributions amenable to analytical
analysis than complex matrix models where only a model wth a Gaussian
distribution are solvable. The statistics of numerically generated eigenvalues
from gaussian distributed normal matrices are compared to the analytical
results obtained and agreement is seen.Comment: 15 pages, 2 eps figures. to appar in Physical Review
Conservation tillage in organic farming
Organic farmers are interested in adopting conservation tillage to preserve soil quality and fertility and to prevent soil erosion. Within the framework of a French national study, we compared conventional (ploughing) and conservation tillage systems in organic farming for arable and vegetable cropping systems. Field experiments and on-farm surveys were conducted in several regions of France in order to assess the effects of different tillage systems on soil fertility (physical, chemical, biological) and on weed and crop development. Conservation tillage techniques induced a more compact soil, an increase of carbon and microorganisms in the first soil layer, and an increase of earthworm biomass for very superficial tillage. Weed control was only a major problem for the very superficial tillage, which in turn generated lower crop yields than conventional tillage. The main issues raised by this programme deal with the long-term effects of these techniques on soil fertility, and the improvement of conservation tillage techniques in organic farming
Dynamics of the Hubbard model: a general approach by time dependent variational principle
We describe the quantum dynamics of the Hubbard model at semi-classical
level, by implementing the Time-Dependent Variational Principle (TDVP)
procedure on appropriate macroscopic wavefunctions constructed in terms of
su(2)-coherent states. Within the TDVP procedure, such states turn out to
include a time-dependent quantum phase, part of which can be recognized as
Berry's phase. We derive two new semi-classical model Hamiltonians for
describing the dynamics in the paramagnetic, superconducting, antiferromagnetic
and charge density wave phases and solve the corresponding canonical equations
of motion in various cases. Noticeably, a vortex-like ground state phase
dynamics is found to take place for U>0 away from half filling. Moreover, it
appears that an oscillatory-like ground state dynamics survives at the Fermi
surface at half-filling for any U. The low-energy dynamics is also exactly
solved by separating fast and slow variables. The role of the time-dependent
phase is shown to be particularly interesting in the ordered phases.Comment: ReVTeX file, 38 pages, to appear on Phys. Rev.
Diagonal Representation for a Generic Matrix Valued Quantum Hamiltonian
A general method to derive the diagonal representation for a generic matrix
valued quantum Hamiltonian is proposed. In this approach new mathematical
objects like non-commuting operators evolving with the Planck constant promoted
as a running variable are introduced. This method leads to a formal compact
expression for the diagonal Hamiltonian which can be expanded in a power series
of the Planck constant. In particular, we provide an explicit expression for
the diagonal representation of a generic Hamiltonian to the second order in the
Planck constant. This last result is applied, as a physical illustration, to
Dirac electrons and neutrinos in external fields.Comment: Significant revision, typos corrected and references adde
Berry Curvature in Graphene: A New Approach
In the present paper we have directly computed the Berry curvature terms
relevant for Graphene in the presence of an \textit{inhomogeneous} lattice
distortion. We have employed the generalized Foldy Wouthuysen framework,
developed by some of us \cite{ber0,ber1,ber2}. We show that a non-constant
lattice distortion leads to a valley-orbit coupling which is responsible to a
valley-Hall effect. This is similar to the valley-Hall effect induced by an
electric field proposed in \cite{niu2} and is the analogue of the spin-Hall
effect in semiconductors \cite{MURAKAMI, SINOVA}. Our general expressions for
Berry curvature, for the special case of homogeneous distortion, reduce to the
previously obtained results \cite{niu2}. We also discuss the Berry phase in the
quantization of cyclotron motion.Comment: Slightly modified version, to appear in EPJ
Casimir interaction between two concentric cylinders: exact versus semiclassical results
The Casimir interaction between two perfectly conducting, infinite,
concentric cylinders is computed using a semiclassical approximation that takes
into account families of classical periodic orbits that reflect off both
cylinders. It is then compared with the exact result obtained by the
mode-by-mode summation technique. We analyze the validity of the semiclassical
approximation and show that it improves the results obtained through the
proximity theorem.Comment: 28 pages, 5 figures include
Gravitational Geometric Phase in the Presence of Torsion
We investigate the relativistic and non-relativistic quantum dynamics of a
neutral spin-1/2 particle submitted an external electromagnetic field in the
presence of a cosmic dislocation. We analyze the explicit contribution of the
torsion in the geometric phase acquired in the dynamic of this neutral
spinorial particle. We discuss the influence of the torsion in the relativistic
geometric phase. Using the Foldy-Wouthuysen approximation, the non-relativistic
quantum dynamics are studied and the influence of the torsion in the
Aharonov-Casher and He-McKellar-Wilkens effects are discussed.Comment: 14 pages, no figur
Progress in customer relationship management adoption: a cross-sector study
Although customer relationship management (CRM) is widely used by organizations to capture and manage customer data, the process of implementation can be problematic. This article takes a multi-sector view of CRM implementation in three areas of the UK services sector: banking and finance; professional services; and the government/public sector. The study captures variations in CRM practice and implementation across these sectors, applying an existing framework of CRM implementation to tease out progress in relation to people (the company's staff), the company itself, the customers, and the technology. The implications for organizations that have reached different implementation stages in their CRM journey are considered
The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour
Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect
- …