2,224 research outputs found

    Geometric phases for wave packets in a uniform magnetic field

    Full text link
    A wave packet of a charged particle always make cyclic circular motion in a uniform magnetic field, just like a classical particle. The nonadiabatic geometric phase for an arbitrary wave packet can be expressed in terms of the mean value of a number operator. For a large class of wave packets, the geometric phase is proportional to the magnetic flux encircled by the orbit of the wave packet. For more general wave packets, however, the geometric phase contains an extra term.Comment: REVTeX4, 7 pages, no figur

    Exact solutions of n-level systems and gauge theories

    Get PDF
    We find a relationship between unitary transformations of the dynamics of quantum systems with time-dependent Hamiltonians and gauge theories. In particular, we show that the nonrelativistic dynamics of spin-12\frac12 particles in a magnetic field Bi(t)B^i (t) can be formulated in a natural way as an SU(2) gauge theory, with the magnetic field Bi(t)B^i(t) playing the role of the gauge potential A^i. The present approach can also be applied to systems of n levels with time-dependent potentials, U(n) being the gauge group. This geometric interpretation provides a powerful method to find exact solutions of the Schr\"odinger equation. The root of the present approach rests in the Hermiticity property of the Hamiltonian operators involved. In addition, the relationship with true gauge symmetries of n-level quantum systems is discussed.Comment: LaTeX file, 5 pages, published versio

    The Geometric Phase and Ray Space Isometries

    Get PDF
    We study the behaviour of the geometric phase under isometries of the ray space. This leads to a better understanding of a theorem first proved by Wigner: isometries of the ray space can always be realised as projections of unitary or anti-unitary transformations on the Hilbert space. We suggest that the construction involved in Wigner's proof is best viewed as an use of the Pancharatnam connection to ``lift'' a ray space isometry to the Hilbert space.Comment: 17 pages, Latex file, no figures, To appear in Pramana J. Phy

    Tops and Writhing DNA

    Full text link
    The torsional elasticity of semiflexible polymers like DNA is of biological significance. A mathematical treatment of this problem was begun by Fuller using the relation between link, twist and writhe, but progress has been hindered by the non-local nature of the writhe. This stands in the way of an analytic statistical mechanical treatment, which takes into account thermal fluctuations, in computing the partition function. In this paper we use the well known analogy with the dynamics of tops to show that when subjected to stretch and twist, the polymer configurations which dominate the partition function admit a local writhe formulation in the spirit of Fuller and thus provide an underlying justification for the use of Fuller's "local writhe expression" which leads to considerable mathematical simplification in solving theoretical models of DNA and elucidating their predictions. Our result facilitates comparison of the theoretical models with single molecule micromanipulation experiments and computer simulations.Comment: 17 pages two figure

    Topological Phases near a Triple Degeneracy

    Get PDF
    We study the pattern of three state topological phases that appear in systems with real Hamiltonians and wave functions. We give a simple geometric construction for representing these phases. We then apply our results to understand previous work on three state phases. We point out that the ``mirror symmetry'' of wave functions noticed in microwave experiments can be simply understood in our framework.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Geometric Phase in Entangled Bipartite Systems

    Full text link
    The geometric phase (GP) for bipartite systems in transverse external magnetic fields is investigated in this paper. Two different situations have been studied. We first consider two non-interacting particles. The results show that because of entanglement, the geometric phase is very different from that of the non-entangled case. When the initial state is a Werner state, the geometric phase is, in general, zero and moreover the singularity of the geometric phase may appear with a proper evolution time. We next study the geometric phase when intra-couplings appear and choose Werner states as the initial states to entail this discussion. The results show that unlike our first case, the absolute value of the GP is not zero, and attains its maximum when the rescaled coupling constant JJ is less than 1. The effect of inhomogeneity of the magnetic field is also discussed.Comment: 5 pages and to be published in Euro. Phys. J.

    Quantum Particle-Trajectories and Geometric Phase

    Full text link
    "Particle"-trajectories are defined as integrable dxμdpμ=0dx_\mu dp^\mu = 0 paths in projective space. Quantum states evolving on such trajectories, open or closed, do not delocalise in (x,p)(x, p) projection, the phase associated with the trajectories being related to the geometric (Berry) phase and the Classical Mechanics action. High Energy Physics properties of states evolving on "particle"-trajectories are discussed.Comment: 4 page

    Geometric Phases and Mielnik's Evolution Loops

    Full text link
    The cyclic evolutions and associated geometric phases induced by time-independent Hamiltonians are studied for the case when the evolution operator becomes the identity (those processes are called {\it evolution loops}). We make a detailed treatment of systems having equally-spaced energy levels. Special emphasis is made on the potentials which have the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials) and on their recently found coherent states.Comment: 11 pages, harvmac, 2 figures available upon request; CINVESTAV-FIS GFMR 11/9

    Noncyclic geometric phase for neutrino oscillation

    Get PDF
    We provide explicit formulae for the noncyclic geometric phases or Pancharatnam phases of neutrino oscillations. Since Pancharatnam phase is a generalization of the Berry phase, our results generalize the previous findings for Berry phase in a recent paper [Phys. Lett. B, 466 (1999) 262]. Unlike the Berry phase, the noncyclic geometric phase offers distinctive advantage in terms of measurement and prediction. In particular, for three-flavor mixing, our explicit formula offers an alternative means of determining the CP-violating phase. Our results can also be extended easily to explore geometric phase associated with neutron-antineutron oscillations
    corecore