9,815 research outputs found

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics

    Implementation of universal quantum gates based on nonadiabatic geometric phases

    Get PDF
    We propose an experimentally feasible scheme to achieve quantum computation based on nonadiabatic geometric phase shifts, in which a cyclic geometric phase is used to realize a set of universal quantum gates. Physical implementation of this set of gates is designed for Josephson junctions and for NMR systems. Interestingly, we find that the nonadiabatic phase shift may be independent of the operation time under appropriate controllable conditions. A remarkable feature of the present nonadiabatic geometric gates is that there is no intrinsic limitation on the operation time, unlike adiabatic geometric gates. Besides fundamental interest, our results may simplify the implementation of geometric quantum computation based on solid state systems, where the decoherence time may be very short.Comment: 5 pages, 2 figures; the version published in Phys. Rev. Let
    • …
    corecore