149 research outputs found
Strongly coupled 't Hooft model on the lattice
A lattice strong coupling calculation of the spectrum and chiral condensate
of the 't Hooft model is presented. The agreement with the results of the
continuum theory is strikingly good even at the fourth order in the strong
coupling expansion.Comment: LATTICE99(Spin Models), talk presented by F. Berruto, 3 pages, LaTex,
espcrc2.st
Lattice Gauge Theories and the Heisenberg Antiferromagnetic Chain
We study the strongly coupled 2-flavor lattice Schwinger model and the
SU(2)-color QCD_2. The strong coupling limit, even with its inherent
nonuniversality, makes accurate predictions of the spectrum of the continuum
models and provides an intuitive picture of the gauge theory vacuum. The
massive excitations of the gauge model are computable in terms of spin-spin
correlators of the quantum Heisenberg antiferromagnetic spin-1/2 chain.Comment: Proceedings LATTICE99 (spin models), 3 page
Low-lying meson spectrum of large strongly coupled lattice QCD
We compute the low energy mass spectrum of lattice QCD in the large
limit. Expanding around a gauge-invariant ground state, which spontaneously
breaks the discrete chiral symmetry, we derive an improved strong-coupling
expansion and evaluate, for any value of , the masses of the low-lying
states in the unflavored meson spectrum. We then take the 't Hooft limit by
rescaling ; the 't Hooft limit is smooth and no arbitrary
parameters are needed. We find, already at the fourth order of the strong
coupling perturbation theory, a very good agreement between the results of our
lattice computation and the known continuum values.Comment: 43 pages, 1 figure. Minor corrections. One reference added in section
The Chiral Condensate of Strongly Coupled QCD in the 't Hooft Limit
Using the recently proposed generalization to an arbitrary number of colors
of the strong coupling approach to lattice gauge
theories\cite{Grignani:2003uv}, we compute the chiral condensate of massless
QCD in the 't Hooft limit.Comment: 12 pages, revtex
meV resolution in laser-assisted energy-filtered transmission electron microscopy
The electronic, optical, and magnetic properties of quantum solids are
determined by their low-energy (< 100 meV) many-body excitations. Dynamical
characterization and manipulation of such excitations relies on tools that
combine nm-spatial, fs-temporal, and meV-spectral resolution. Currently,
phonons and collective plasmon resonances can be imaged in nanostructures with
sub-nm and 10s meV space/energy resolution using state-of-the-art
energy-filtered transmission electron microscopy (TEM), but only under static
conditions, while fs-resolved measurements are common but lack spatial or
energy resolution. Here, we demonstrate a new method of spectrally resolved
photon-induced near-field electron microscopy (SRPINEM) that allows us to
obtain nm-fs-resolved maps of nanoparticle plasmons with an energy resolution
determined by the laser linewidth (20 meV in this work), and not limited by
electron beam and spectrometer energy spreading. This technique can be extended
to any optically-accessible low-energy mode, thus pushing TEM to a previously
inaccessible spectral domain with an unprecedented combination of space, energy
and temporal resolution.Comment: 19 pages, 7 figure
Biomass supply chain event management
 D. K. Folinas1, D. D. Bochtis2, C. G. Sørensen2, P. Busato3(1. ATEI Thessaloniki, Department of Logistics, Greece; 2. Department of Biosystems Engineering, Faculty of Agricultural Sciences, Aarhus University, Blichers Alle´ 20, P.O. box 50;   3. DEIAFA Department,Faculty of Agriculture, University of Turin, Via Leonardo da Vinci 44, 10095, Grugliasco, Turin, Italy) Abstract: The biomass supply chain constitutes a system that is highly dynamic and stochastic.  The developed and proposed systems architectures for the management of the supply chains of typical industrial products do not directly apply to the case of the biomass supply chain
From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields
Light-electron interaction in empty space is the seminal ingredient for
free-electron lasers and also for controlling electron beams to dynamically
investigate materials and molecules. Pushing the coherent control of free
electrons by light to unexplored timescales, below the attosecond, would enable
unprecedented applications in light-assisted electron quantum circuits and
diagnostics at extremely small timescales, such as those governing
intramolecular electronic motion and nuclear phenomena. We experimentally
demonstrate attosecond coherent manipulation of the electron wave function in a
transmission electron microscope, and show that it can be pushed down to the
zeptosecond regime with existing technology. We make a relativistic pulsed
electron beam interact in free space with an appropriately synthesized
semi-infinite light field generated by two femtosecond laser pulses reflected
at the surface of a mirror and delayed by fractions of the optical cycle. The
amplitude and phase of the resulting coherent oscillations of the electron
states in energymomentum space are mapped via momentum-resolved ultrafast
electron energy-loss spectroscopy. The experimental results are in full
agreement with our theoretical framework for light-electron interaction, which
predicts access to the zeptosecond timescale by combining semi-infinite X-ray
fields with free electrons.Comment: 22 pages, 6 figure
- …