3 research outputs found

    THE SWIFT UVOT STARS SURVEY. I. METHODS AND TEST CLUSTERS

    Get PDF
    We describe the motivations and background of a large survey of nearby stel- lar populations using the Ultraviolet Optical Telescope (UVOT) aboard the Swift Gamma-Ray Burst Mission. UVOT, with its wide field, NUV sensitivity, and 2.3 spatial resolution, is uniquely suited to studying nearby stellar populations and providing insight into the NUV properties of hot stars and the contribution of those stars to the integrated light of more distant stellar populations. We review the state of UV stellar photometry, outline the survey, and address problems spe- cific to wide- and crowded-field UVOT photometry. We present color-magnitude diagrams of the nearby open clusters M 67, NGC 188, and NGC 2539, and the globular cluster M 79. We demonstrate that UVOT can easily discern the young- and intermediate-age main sequences, blue stragglers, and hot white dwarfs, pro- ducing results consistent with previous studies. We also find that it characterizes the blue horizontal branch of M 79 and easily identifies a known post-asymptotic giant branch star.Comment: 35 pages, 8 figures, accepted for publication in Astronomical Journa

    Exposure Route Influences Disease Severity in the COVID-19 Cynomolgus Macaque Model

    No full text
    The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure—combined intratracheal/intranasal and small particle aerosol—in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines

    Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure.

    No full text
    Airborne transmission is predicted to be a prevalent route of human exposure with SARS-CoV-2. Aside from African green monkeys, nonhuman primate models that replicate airborne transmission of SARS-CoV-2 have not been investigated. A comparative evaluation of COVID-19 in African green monkeys, rhesus macaques, and cynomolgus macaques following airborne exposure to SARS-CoV-2 was performed to determine critical disease parameters associated with disease progression, and establish correlations between primate and human COVID-19. Respiratory abnormalities and viral shedding were noted for all animals, indicating successful infection. Cynomolgus macaques developed fever, and thrombocytopenia was measured for African green monkeys and rhesus macaques. Type II pneumocyte hyperplasia and alveolar fibrosis were more frequently observed in lung tissue from cynomolgus macaques and African green monkeys. The data indicate that, in addition to African green monkeys, macaques can be successfully infected by airborne SARS-CoV-2, providing viable macaque natural transmission models for medical countermeasure evaluation
    corecore