2 research outputs found

    Quantitative Determination of Acrolein in Cider by 1H NMR Spectrometry

    Get PDF
    Acrolein occasionally appears in cider, completely spoiling its quality due to its bitter taste. It is crucial to detect it in the early steps, before the taste is severely affected, to apply the appropriate treatment. A simple and rapid analytical method to determine this compound in cider is therefore desirable. In this work, a quantitative determination method of acrolein in cider is proposed using the proton nuclear magnetic resonance technique (1H NMR). Acrolein produces a doublet signal in the spectrum at 9.49 ppm, whose area is used to determine the concentration of this compound. 3-(trimethylsilyl)-2,2,3,3-d4-propionic acid sodium salt is added to the cider as a reference for 0.00 ppm and 1,3,5-benzenetricarboxylic acid as an internal standard for acrolein determination. The method is validated by gas chromatography (GC). There is a good correlation between the acrolein concentrations obtained by 1H NMR and by gas chromatography in different commercial ciders (Pearson coefficient 0.9994). The 95% confidence interval for the intercept is 0.15 ± 0.49 (includes 0) and for the slope is 0.98 ± 0.03 (includes 1). When applying the paired t test, no significant difference is observed. The proposed method is direct, and no prior derivatization is needed

    Characterization of the heteropolysaccharides produced by Liquorilactobacillus sicerae CUPV261 and Secundilactobacillus collinoides CUPV237 isolated from cider

    Get PDF
    Some lactic acid bacteria (LAB) strains isolated from alcoholic beverages are able to produce exopolysaccharides (EPS). The present work focuses on the physico-chemical characterization of the heteropolysaccharides (HePS) produced by Liquorilactobacillus sicerae CUPV261T (formerly known as Lactobacillus sicerae) and Secundilactobacillus collinoides CUPV237 (formerly known as Lactobacillus collinoides) strains isolated from cider. Genome sequencing and assembly enabled the identification of at least four putative HePS gene clusters in each strain, which correlated with the ability of both strains to secrete EPS. The crude EPS preparation from CUPV261T contained glucose, galactose and rhamnose, and that of CUPV237 was composed of glucose, galactose and N-acetylglucosamine. Both EPS were mixtures of HePS of different composition, with two major soluble components of average molecular weights (Mw) in the range of 106 and 104 g.mol−1. These HePS were resistant to gastric stress conditions in an in vitro model, and they significantly reduced zebrafish larvae mortality in an in vivo model of inflammatory bowel disease.This research was funded by the Spanish Ministry of Science, Innovation and Universities (grant RTI2018-097114-B-I00 to P.L. and M.T.D.), by the Basque Government (grants KK-2019/00076, KK-2021/00034, KK-2022/00107, IT1662-22 and PIBA_2020_1_0032 to M.T.D and O.E.) and by the University of the Basque Country (GIU19/014)
    corecore