59 research outputs found
N3-ligated Nickel(II) Diketonate Complexes: Synthesis, Characterization and Evaluation of O2 Reactivity
Interest in O2-dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O2-dependent aliphatic C–C bond cleavage at ambient temperature in Ni(II) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl (7-Cl; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni(II) diketonate complexes of the general formula [(TERPY)Ni(R2-1,3-diketonate)]ClO4 (1: R = CH3; 2: R = C(CH3)3; 3: R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY)2Ni](ClO4)2 (4). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R2-1,3-diketonate)]X (X = ClO4: 5: R = CH3; 6: R = C(CH3)3; 7-ClO4: R = Ph; X = Cl: 7-Cl: R = Ph) using 1H NMR and ESI-MS revealed the presence of [(MBBP)2Ni](ClO4)2 (8). Analysis of aerobic acetonitrile solutions of analytically pure 1–3, 5 and 6 containing NEt3 and in some cases H2O using 1H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes (4 and 8) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3, 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N3-ligated Ni(II) complexes of unsubstituted diketonate ligands do not exhibit O2-dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt3 and/or H2O
Mononuclear N\u3csub\u3e3\u3c/sub\u3eS(thioether)-Ligated Copper(II) Methoxide Complexes: Synthesis, Characterization, and Hydrolytic Reactivity
Mononuclear copper(II) methoxide complexes supported by N3S(thioether) chelate ligands having two internal hydrogen bond donors have been prepared, comprehensively characterized, and evaluated for hydrolytic reactivity
Evaluation of the Influence of a Thioether Substituent on the Solid State and Solution Properties of N\u3csub\u3e3\u3c/sub\u3eS-ligated Copper(II) Complexes
Admixture of a N3S(thioether) ligand having two internal hydrogen bond donors (pbnpa: N-2-(phenylthio)ethyl-N,N-bis-((6-neopentylamino-2-pyridyl)methyl)amine; ebnpa: N-2-(ethylthio)ethyl-N,N-bis-((6-neopentylamino-2-pyridyl)methyl)amine) with equimolar amounts of Cu(ClO4)2·6H2O and NaX (X = Cl−, NCO−, or N3−) in CH3OH/H2O yielded the mononuclear Cu(II) derivatives [(pbnpa)Cu–Cl]ClO4 (1), [(ebnpa)Cu–Cl]ClO4 (2), [(pbnpa)Cu–NCO]ClO4 (3), [(ebnpa)Cu–NCO]ClO4 (4), [(pbnpa)Cu–N3]ClO4 (5), and [(ebnpa)Cu–N3]ClO4 (6). Each complex was characterized by FTIR, UV-VIS, EPR, and elemental analysis. Complexes 1, 2, 3 and 6 were characterized by X-ray crystallography. The structural studies revealed that [(pbnpa)Cu–X]ClO4 derivatives (1, 3) exhibit a distorted square pyramidal type geometry, whereas [(ebnpa)Cu–X]ClO4 complexes (2, 6) may be classified as distorted trigonal bipyramidal. EPR studies in CH3OH/CH3CN solution revealed that 1–6 exhibit an axial type spectrum with g∥ \u3e g⊥ \u3e 2.0 and A∥ = 15–17 mT, consistent with a square pyramidal based geometry for the Cu(II) center in each complex. A second species detected in the EPR spectra of 2 and 6 has a smaller A∥ value, consistent with greater spin delocalization on to sulfur, and likely results from geometric distortion of the [(ebnpa)Cu(II)–X]+ ions present in 2 and 6
Tris-(2-Pyridylmethyl)Amine-Ligated Cu(ii) 1,3-Diketonate Complexes: Anaerobic Retro-Claisen and Dehalogenation Reactivity of 2-Chloro-1,3-Diketonate Derivatives
We report synthetic, structural and reactivity investigations of tris-(2-pyridylmethyl)amine (TPA)-ligated Cu(II) 1,3-diketonate complexes. These complexes exhibit anaerobic retro-Claisen type C–C bond cleavage reactivity which exceeds that found in analogs supported by chelate ligands with fewer and/or weaker pyridyl interactions
CCDC 898824: Experimental Crystal Structure Determination
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.,Related Article: Katarzyna Grubel, Susma Saraf, Stacey N. Anderson, Brynna J.Laughlin, Rhett C. Smith, Atta M. Arif,Lisa M. Berreau|2013|Inorg.Chim.Acta|407|91|doi:10.1016/j.ica.2013.07.02
CCDC 866629: Experimental Crystal Structure Determination
Related Article: K.Grubel, A.R.Marts, S.M.Greer, D.L.Tierney, C.J.Allpress, B.J.Laughlin, R.C.Smith, A.M.Arif, L.M.Berreau|2012|Eur.J.Inorg.Chem.||4750|doi:10.1002/ejic.201200212,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
- …