155 research outputs found

    Specific heat of the S=1/2 Heisenberg model on the kagome lattice: high-temperature series expansion analysis

    Full text link
    We compute specific heat of the antiferromagnetic spin-1/2 Heisenberg model on the kagome lattice. We use a recently introduced technique to analyze high-temperature series expansion based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. In the case of kagome-lattice antiferromagnet, this method predicts a low-temperature peak at T/J<0.1.Comment: 6 pages, 5 color figures (.eps), Revtex 4. Change in version 3: Fig. 5 has been corrected (it now shows data for 3 different ground-state energies). The text is unchanged. v4: corrected an error in the temperature scale of Fig. 5. (text unchanged

    Gradient echo memory in an ultra-high optical depth cold atomic ensemble

    Get PDF
    Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a 87^{87}Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F=2→F′=3F=2 \rightarrow F'=3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of 80±280\pm 2% and coherence times up to 195 μ\mus, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.Comment: 15 pages, 5 figure

    Process tomography of field damping and measurement of Fock state lifetimes by quantum non-demolition photon counting in a cavity

    Get PDF
    The relaxation of a quantum field stored in a high-QQ superconducting cavity is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive quantum non-demolition (QND) photon counting, undergoes jumps between photon number states. We select ensembles of field realizations evolving from a given Fock state and reconstruct the subsequent evolution of their photon number distributions. We realize in this way a tomography of the photon number relaxation process yielding all the jump rates between Fock states. The damping rates of the nn photon states (0≤n≤70\leq n \leq 7) are found to increase linearly with nn. The results are in excellent agreement with theory including a small thermal contribution

    Violation of the Luttinger sum rule within the Hubbard model on a triangular lattice

    Full text link
    The frequency-moment expansion method is developed to analyze the validity of the Luttinger sum rule within the Mott-Hubbard insulator, as represented by the generalized Hubbard model at half filling and large UU. For the particular case of the Hubbard model with nearest-neighbor hopping on a triangular lattice lacking the particle-hole symmetry results reveal substantial violation of the sum rule.Comment: 4 pages, 2 figure

    Magnetism and superconductivity of strongly correlated electrons on the triangular lattice

    Full text link
    We investigate the phase diagram of the \tj Model on a triangular lattice using a Variational Monte-Carlo approach. We use an extended set of Gutzwiller projected fermionic trial wave-functions allowing for simultaneous magnetic and superconducting order parameters. We obtain energies at zero doping for the spin-1/2 Heisenberg model in very good agreement with the best estimates. Upon electron doping (with a hopping integral t<0t<0) this phase is surprisingly stable variationally up to n≈1.4n\approx 1.4, while the dx2−y2+idxyd_{x^{2}-y^{2}}+i d_{xy} order parameter is rather weak and disappears at n≈1.1n\approx 1.1. For hole doping however the coplanar magnetic state is almost immediately destroyed and dx2−y2+idxyd_{x^{2}-y^{2}}+i d_{xy} superconductivity survives down to n≈0.8n\approx 0.8. For lower nn, between 0.2 and 0.8, we find saturated ferromagnetism. Moreover, there is evidence for a narrow spin density wave phase around n≈0.8n\approx 0.8. Commensurate flux phases were also considered, but these turned out {\em not} to be competitive at finite doping.Comment: 11 pages; 11 figure

    Photon number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    Get PDF
    The non-linearity of a conditional photon-counting measurement can be used to `de-Gaussify' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement; unambiguously reconstructing the statistics of the non-Gaussian one and two photon subtracted squeezed vacuum states. Although our photon number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon number resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum information tasks relying on the outcomes of mean values.Comment: 4 pages, 3 figures. Theory section expanded in response to referee comment
    • …
    corecore