21,198 research outputs found

    The Amorphous-Crystal Interface in Silicon: a Tight-Binding Simulation

    Get PDF
    The structural features of the interface between the cystalline and amorphous phases of Si solid are studied in simulations based on a combination of empirical interatomic potentials and a nonorthogonal tight-binding model. The tight-binding Hamiltonian was created and tested for the types of structures and distortions anticipated to occur at this interface. The simulations indicate the presence of a number of interesting features near the interface. The features that may lead to crystallization upon heating include chains with some defects, most prominently dimers similar to those on the Si(001) 2x1 reconstructed free surface. Within the amorphous region order is lost over very short distances. By examining six different samples with two interfaces each, we find the energy of the amorphous-crystal interface to be 0.49 +/- 0.05 J/m^2Comment: Submitted to Phys. Rev.

    Origin of the structural phase transition in Li7La3Zr2O12

    Full text link
    Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte material with a low-conductivity tetragonal and a high-conductivity cubic phase. Using density-functional theory and variable cell shape molecular dynamics simulations, we show that the tetragonal phase stability is dependent on a simultaneous ordering of the Li ions on the Li sublattice and a volume-preserving tetragonal distortion that relieves internal structural strain. Supervalent doping introduces vacancies into the Li sublattice, increasing the overall entropy and reducing the free energy gain from ordering, eventually stabilizing the cubic phase. We show that the critical temperature for cubic phase stability is lowered as Li vacancy concentration (dopant level) is raised and that an activated hop of Li ions from one crystallographic site to another always accompanies the transition. By identifying the relevant mechanism and critical concentrations for achieving the high conductivity phase, this work shows how targeted synthesis could be used to improve electrolytic performance

    Weak Lensing Determination of the Mass in Galaxy Halos

    Get PDF
    We detect the weak gravitational lensing distortion of 450,000 background galaxies (20<R<23) by 790 foreground galaxies (R<18) selected from the Las Campanas Redshift Survey (LCRS). This is the first detection of weak lensing by field galaxies of known redshift, and as such permits us to reconstruct the shear profile of the typical field galaxy halo in absolute physical units (modulo H_0), and to investigate the dependence of halo mass upon galaxy luminosity. This is also the first galaxy-galaxy lensing study for which the calibration errors are negligible. Within a projected radius of 200 \hkpc, the shear profile is consistent with an isothermal profile with circular velocity 164+-20 km/s for an L* galaxy, consistent with typical disk rotation at this luminosity. This halo mass normalization, combined with the halo profile derived by Fischer et al (2000) from lensing analysis SDSS data, places a lower limit of (2.7+-0.6) x 10^{12}h^{-1} solar masses on the mass of an L* galaxy halo, in good agreement with satellite galaxy studies. Given the known luminosity function of LCRS galaxies, and the assumption that MLβM\propto L^\beta for galaxies, we determine that the mass within 260\hkpc of normal galaxies contributes Ω=0.16±0.03\Omega=0.16\pm0.03 to the density of the Universe (for β=1\beta=1) or Ω=0.24±0.06\Omega=0.24\pm0.06 for β=0.5\beta=0.5. These lensing data suggest that 0.6<β<2.40.6<\beta<2.4 (95% CL), only marginally in agreement with the usual β0.5\beta\approx0.5 Faber-Jackson or Tully-Fisher scaling. This is the most complete direct inventory of the matter content of the Universe to date.Comment: 18 pages, incl. 3 figures. Submitted to ApJ 6/7/00, still no response from the referee after four months

    Fast quantum algorithm for numerical gradient estimation

    Full text link
    Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to version

    Matrix De Rham complex and quantum A-infinity algebras

    Full text link
    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi: 10.1093/imrn/rnm075, is represented via de Rham differential acting on the matrix spaces related with Bernstein-Leites simple associative algebras with odd trace q(N), and with gl(N|N). I also show that the Lagrangians of the matrix integrals from "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals", Comptes Rendus Mathematique, vol 348 (2010), pp. 359-362, arXiv:0912.5484, are equivariantly closed differential forms.Comment: published versio

    The Size Distribution of Trans-Neptunian Bodies

    Get PDF
    [Condensed] We search 0.02 deg^2 for trans-Neptunian objects (TNOs) with m<=29.2 (diameter ~15 km) using the ACS on HST. Three new objects are discovered, roughly 25 times fewer than expected from extrapolation of the differential sky density Sigma(m) of brighter objects. The ACS and other recent TNO surveys show departures from a power law size distribution. Division of the TNO sample into ``classical Kuiper belt'' (CKB) and ``Excited'' samples reveals that Sigma(m) differs for the two populations at 96% confidence. A double power law adequately fits all data. Implications include: The total mass of the CKB is ~0.010 M_Earth, only a few times Pluto's mass, and is predominately in the form of ~100 km bodies. The mass of Excited objects is perhaps a few times larger. The Excited class has a shallower bright-end size distribution; the largest objects, including Pluto, comprise tens of percent of the total mass whereas the largest CKBOs are only ~2% of its mass. The predicted mass of the largest Excited body is close to the Pluto mass; the largest CKBO is ~60 times less massive. The deficit of small TNOs occurs for sizes subject to disruption by present-day collisions, suggesting extensive depletion by collisions. Both accretion and erosion appearing to have proceeded to more advanced stages in the Excited class than the CKB. The absence of distant TNOs implies that any distant (60 AU) population must have less than the CKB mass in the form of objects 40 km or larger. The CKB population is sparser than theoretical estimates of the required precursor population for short period comets, but the Excited population could be a viable precursor population.Comment: Revised version accepted to the Astronomical Journal. Numerical results are very slightly revised. Implications for the origins of short-period comets are substantially revised, and tedious material on statistical tests has been collected into a new Appendi
    corecore