3,184 research outputs found

    Rejecting another pains the self: The impact of perceived future rejection

    Get PDF
    The current investigation examined whether people would experience a higher level of pain after rejecting another person, especially for those high in evaluative concern, through increased perceptions of future rejection. Three experiments provide converging support to these predictions. After reliving a past rejecting experience (Experiments 1 and 2) and concurrently rejecting another person (Experiment 3), the source of rejection experienced a higher level of pain than participants in the control conditions. We also found that evaluative concern, either primed (Experiment 2) or measured (Experiment 3) moderated the above effect, such that this effect was only observed among participants high in evaluative concern, but not among those low in evaluative concern. Moreover, perceived future rejection mediated the moderating effect of evaluative concern and rejecting another person on the levels of pain that people experience (Experiment 3). These findings contribute to the literature by showing a mechanism explaining why rejecting another person pains the self and who are more susceptible to this influence.postprin

    Extra-gastrointestinal manifestations of inflammatory bowel disease may be less common than previously reported

    Get PDF
    Extra-intestinal manifestations are well recognized in inflammatory bowel disease (IBD). To what extent the commonly recognized extra-intestinal manifestations seen in IBD patients are attributable to IBD is, however, not clear due to the limited number of controlled studies published

    Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood

    Get PDF
    The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30

    Directed Evolution of Protein-Based Neurotransmitter Sensors for MRI

    Get PDF
    The production of contrast agents sensitive to neuronal signaling events is a rate-limiting step in the development of molecular-level functional magnetic resonance imaging (molecular fMRI) approaches for studying the brain. High-throughput generation and evaluation of potential probes are possible using techniques for macromolecular engineering of protein-based contrast agents. In an initial exploration of this strategy, we used the method of directed evolution to identify mutants of a bacterial heme protein that allowed detection of the neurotransmitter dopamine in vitro and in living animals. The directed evolution method involves successive cycles of mutagenesis and screening that could be generalized to produce contrast agents sensitive to a variety of molecular targets in the nervous system

    An Improved BKW Algorithm for LWE with Applications to Cryptography and Lattices

    Get PDF
    In this paper, we study the Learning With Errors problem and its binary variant, where secrets and errors are binary or taken in a small interval. We introduce a new variant of the Blum, Kalai and Wasserman algorithm, relying on a quantization step that generalizes and fine-tunes modulus switching. In general this new technique yields a significant gain in the constant in front of the exponent in the overall complexity. We illustrate this by solving p within half a day a LWE instance with dimension n = 128, modulus q=n2q = n^2, Gaussian noise α=1/(n/πlog2n)\alpha = 1/(\sqrt{n/\pi} \log^2 n) and binary secret, using 2282^{28} samples, while the previous best result based on BKW claims a time complexity of 2742^{74} with 2602^{60} samples for the same parameters. We then introduce variants of BDD, GapSVP and UniqueSVP, where the target point is required to lie in the fundamental parallelepiped, and show how the previous algorithm is able to solve these variants in subexponential time. Moreover, we also show how the previous algorithm can be used to solve the BinaryLWE problem with n samples in subexponential time 2(ln2/2+o(1))n/loglogn2^{(\ln 2/2+o(1))n/\log \log n}. This analysis does not require any heuristic assumption, contrary to other algebraic approaches; instead, it uses a variant of an idea by Lyubashevsky to generate many samples from a small number of samples. This makes it possible to asymptotically and heuristically break the NTRU cryptosystem in subexponential time (without contradicting its security assumption). We are also able to solve subset sum problems in subexponential time for density o(1)o(1), which is of independent interest: for such density, the previous best algorithm requires exponential time. As a direct application, we can solve in subexponential time the parameters of a cryptosystem based on this problem proposed at TCC 2010.Comment: CRYPTO 201

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders

    Inflammatory bowel disease, such as Ulcerative colitis, is a risk factor for recurrent thromboembolic events: a case report

    Get PDF
    Ulcerative colitis (UC), a member of the family of inflammatory bowel disease (IBD), occurs worldwide. It has an incidence which in recent years has been rising in areas such as Southern Europe and Asia, while remaining relatively constant in Northern Europe and North America

    Prostate Cancer and Race

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72215/1/j.1525-1497.2003.30801.x.pd
    corecore