4 research outputs found

    Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification

    Get PDF
    SummaryCardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1+ precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1+ cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1+/Nkx2.5+/flk1+ defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1+ cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types

    Selective Attenuation of Norepinephrine Release and Stress-Induced Heart Rate Increase by Partial Adenosine A1 Agonism

    Get PDF
    The release of the neurotransmitter norepinephrine (NE) is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR), NE release was induced by electrical stimulation under control conditions (S1), and with capadenoson 6 · 10−8 M (30 µg/l), 6 · 10−7 M (300 µg/l) or 2-chloro-N6-cyclopentyladenosine (CCPA) 10−6 M (S2). Under control conditions (S1), NE release was significantly higher in SHR hearts compared to Wistar (766+/−87 pmol/g vs. 173+/−18 pmol/g, p<0.01). Capadenoson led to a concentration-dependent decrease of the stimulation–induced NE release in SHR (S2/S1 = 0.90±0.08 with capadenoson 6 · 10−8 M, 0.54±0.02 with 6 · 10−7 M), but not in Wistar hearts (S2/S1 = 1.05±0.12 with 6 · 10−8 M, 1.03±0.09 with 6 · 10−7 M). CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [35S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/−2% A1-receptor stimulation). These results suggest that partial adenosine A1-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release

    Characterization of the Recombinant Adenovirus Vector AdYB-1: Implications for Oncolytic Vector Development

    No full text
    Conditionally replicating adenoviruses are a promising new modality for the treatment of cancer. However, early clinical trials demonstrate that the efficacy of current vectors is limited. Interestingly, DNA replication and production of viral particles do not always correlate with virus-mediated cell lysis and virus release depending on the vector utilized for infection. However, we have previously reported that nuclear accumulation of the human transcription factor YB-1 by regulating the adenoviral E2 late promoter facilitates viral DNA replication of E1-deleted adenovirus vectors which are widely used for cancer gene therapy. Here we report the promotion of virus-mediated cell killing as a new function of the human transcription factor YB-1. In contrast to the E1A-deleted vector dl312 the first-generation adenovirus vector AdYB-1, which overexpresses YB-1 under cytomegalovirus promoter control, led to necrosis-like cell death, virus production, and viral release after infection of A549 and U2OS tumor cell lines. Our data suggest that the integration of YB-1 in oncolytic adenoviruses is a promising strategy for developing oncolytic vectors with enhanced potency against different malignancies
    corecore