1,844 research outputs found
Lightness Dependencies and the Effect of Texture on Suprathreshold Lightness Tolerances
A psychophysical experiment was performed to determine the effects of lightness dependency on suprathreshold lightness tolerances. Using a pass/fail method of constant stimuli, lightness tolerance thresholds were measured using achromatic stimuli centered at CIELAB L* = 10, 20, 40, 60, 80, and 90 using 44 observers. In addition to measuring tolerance thresholds for uniform samples, lightness tolerances were measured using stimuli with a simulated texture of thread wound on a card. A texture intermediate between the wound thread and the uniform stimuli was also used. A computer-controlled CRT was used to perform the experiments. Lightness tolerances were found to increase with increasing lightness of the test stimuli. For the uniform stimuli this effect was only evident at the higher lightnesses. For the textured stimuli, this trend was more evident throughout the whole lightness range. Texture had an effect of increasing the tolerance thresholds by a factor of almost 2 as compared to the uniform stimuli. The intermediate texture had tolerance thresholds that were between those of the uniform and full-textured stimuli. Transforming the results into a plot of threshold vs. intensity produced results that were more uniform across the three conditions. This may indicate that CIELAB is not the best space in which to model these effects
Quantum Phase Tomography of a Strongly Driven Qubit
The interference between repeated Landau-Zener transitions in a qubit swept
through an avoided level crossing results in Stueckelberg oscillations in qubit
magnetization. The resulting oscillatory patterns are a hallmark of the
coherent strongly-driven regime in qubits, quantum dots and other two-level
systems. The two-dimensional Fourier transforms of these patterns are found to
exhibit a family of one-dimensional curves in Fourier space, in agreement with
recent observations in a superconducting qubit. We interpret these images in
terms of time evolution of the quantum phase of qubit state and show that they
can be used to probe dephasing mechanisms in the qubit.Comment: 5 pgs, 4 fg
Lessons from the Congested Clique Applied to MapReduce
The main results of this paper are (I) a simulation algorithm which, under
quite general constraints, transforms algorithms running on the Congested
Clique into algorithms running in the MapReduce model, and (II) a distributed
-coloring algorithm running on the Congested Clique which has an
expected running time of (i) rounds, if ;
and (ii) rounds otherwise. Applying the simulation theorem to
the Congested-Clique -coloring algorithm yields an -round
-coloring algorithm in the MapReduce model.
Our simulation algorithm illustrates a natural correspondence between
per-node bandwidth in the Congested Clique model and memory per machine in the
MapReduce model. In the Congested Clique (and more generally, any network in
the model), the major impediment to constructing fast
algorithms is the restriction on message sizes. Similarly, in the
MapReduce model, the combined restrictions on memory per machine and total
system memory have a dominant effect on algorithm design. In showing a fairly
general simulation algorithm, we highlight the similarities and differences
between these models.Comment: 15 page
Recommended from our members
The martyrdom effect : when pain and effort increase prosocial contributions
Most theories of motivation and behavior (and lay intuitions alike) consider pain and effort to be deterrents. In contrast to this widely held view, we provide evidence that the prospect of enduring pain and exerting effort for a prosocial cause can promote contributions to the cause. Specifically, we show that willingness to contribute to a charitable or collective cause increases when the contribution process is expected to be painful and effortful rather than easy and enjoyable. Across five experiments, we document this “martyrdom effect,” show that the observed patterns defy standard economic and psychological accounts, and identify a mediator and moderator of the effect. Experiment 1 showed that people are willing to donate more to charity when they anticipate having to suffer to raise money. Experiment 2 extended these findings to a non-charity laboratory context that involved real money and actual pain. Experiment 3 demonstrated that the martyrdom effect is not the result of an attribute substitution strategy (whereby people use the amount of pain and effort involved in fundraising to determine donation worthiness). Experiment 4 showed that perceptions of meaningfulness partially mediate the martyrdom effect. Finally, Experiment 5 demonstrated that the nature of the prosocial cause moderates the martyrdom effect: the effect is strongest for causes associated with human suffering. We propose that anticipated pain and effort lead people to ascribe greater meaning to their contributions and to the experience of contributing, thereby motivating higher prosocial contributions. We conclude by considering some implications of this puzzling phenomenon. Copyright © 2011 John Wiley & Sons, Ltd
Pulse calibration and non-adiabatic control of solid-state artificial atoms
Transitions in an artificial atom, driven non-adiabatically through an
energy-level avoided crossing, can be controlled by carefully engineering the
driving protocol. We have driven a superconducting persistent-current qubit
with a large-amplitude, radio-frequency field. By applying a bi-harmonic
waveform generated by a digital source, we demonstrate a mapping between the
amplitude and phase of the harmonics produced at the source and those received
by the device. This allows us to image the actual waveform at the device. This
information is used to engineer a desired time dependence, as confirmed by
detailed comparison with simulation.Comment: 4.1 pages, 3 figure
THERMAL DENATURATION OF MONOMERIC AND TRIMERIC PHYCOCYANINS STUDIED BY STATIC AND SPECTROSCOPY POLARIZED TIME-RESOLVED FLUORESCENCE
C-Phycocyanin (PC) and allophycocyanin (APC). as well as the a-subunit of PC. have been
isolated from the blue-green alga (cyanobacterium). Spirulina platensis. The effects of partial thermal
denaturation of PC and of its state of aggregation have been studied by ps time-resolved, polarized
fluorescence spectroscopy. All measurements have been performed under low photon fluxes (< 10’ ’
photonsipulse x cm’) to minimize singlet-singlet annihilation processes. A complex decay is obtained
under most conditions, which can be fitted satisfactorily with a bi-exponential (7’ = 70400 ps. T? =
1000-3000 ps) for both the isotropic and the polarized part, but with different intensities and time
constants for the two decay curves. The data are interpreted in the frameworkof the model first developed
by Teak and Dale (Biochern. J. 116, 161 (1970)], which divides the spectroscopically different
chromophores in (predominantly) sensitizing (s) and fluorescing U, ones. If one assumes temperature
dependent losses in the energy transfer from the s to the f and between f chromophores. both the
biexponential nature of the isotropic fluorescence decay and the polarization data can be rationalized. In
the isotropic emission (corresponding to the population of excited states) the short lifetime is related to the
s-,f transfer. the longer one to the “free“ decay of the final acceptor(s) (= f). The polarized part is
dominated by an extremely short decay time. which is related to s+f transfer, as well as to resonance
transfer between the f-chromophores
- …