1,907 research outputs found

    Few Graphene layer/Carbon-Nanotube composite Grown at CMOS-compatible Temperature

    Get PDF
    We investigate the growth of the recently demonstrated composite material composed of vertically aligned carbon nanotubes capped by few graphene layers. We show that the carbon nanotubes grow epitaxially under the few graphene layers. By using a catalyst and gaseous carbon precursor different from those used originally we establish that such unconventional growth mode is not specific to a precise choice of catalyst-precursor couple. Furthermore, the composite can be grown using catalyst and temperatures compatible with CMOS processing (T < 450\degree C).Comment: 4 pages, 4 figure

    Level attraction in a microwave optomechanical circuit

    Full text link
    Level repulsion - the opening of a gap between two degenerate modes due to coupling - is ubiquitous anywhere from solid state theory to quantum chemistry. In contrast, if one mode has negative energy, the mode frequencies attract instead. They converge and develop imaginary components, leading to an instability; an exceptional point marks the transition. This, however, only occurs if the dissipation rates of the two modes are comparable. Here we expose a theoretical framework for the general phenomenon and realize it experimentally through engineered dissipation in a multimode superconducting microwave optomechanical circuit. Level attraction is observed for a mechanical oscillator and a superconducting microwave cavity, while an auxiliary cavity is used for sideband cooling. Two exceptional points are demonstrated that could be exploited for their topological properties.Comment: 5 pages, 4 figures; includes Supplementary informatio

    Brain amyloid in preclinical Alzheimer\u27s disease is associated with increased driving risk

    Get PDF
    INTRODUCTION: Postmortem studies suggest that fibrillar brain amyloid places people at higher risk for hazardous driving in the preclinical stage of Alzheimer's disease (AD). METHODS: We administered driving questionnaires to 104 older drivers (19 AD, 24 mild cognitive impairment, and 61 cognitive normal) who had a recent (18)F-florbetapir positron emission tomography scan. We examined associations of amyloid standardized uptake value ratios with driving behaviors: traffic violations or accidents in the past 3 years. RESULTS: The frequency of violations or accidents was curvilinear with respect to standardized uptake value ratios, peaking around a value of 1.1 (model r(2) = 0.10, P = .002); moreover, this relationship was evident for the cognitively normal participants. DISCUSSION: We found that driving risk is strongly related to accumulating amyloid on positron emission tomography, and that this trend is evident in the preclinical stage of AD. Brain amyloid burden may in part explain the increased crash risk reported in older adults

    Field emission properties of nano-composite carbon nitride films

    Full text link
    A modified cathodic arc technique has been used to deposit carbon nitride thin films directly on n+ Si substrates. Transmission Electron Microscopy showed that clusters of fullerene-like nanoparticles are embedded in the deposited material. Field emission in vacuum from as-grown films starts at an electric field strength of 3.8 V/micron. When the films were etched in an HF:NH4F solution for ten minutes, the threshold field decreased to 2.6 V/micron. The role of the carbon nanoparticles in the field emission process and the influence of the chemical etching treatment are discussed.Comment: 22 pages, 8 figures, submitted to J. Vac. Sc. Techn.

    Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay

    Full text link
    Problems related to unsaturated soils are frequently encountered in geotechnical or environmental engineering works. In most cases, for the purpose of simplicity, the problems are studied by considering the suction effects on volume change or shear strength under isothermal conditions. Under isothermal condition, very often, a temperature independent water retention curve is considered in the analysis, which is obviously a simplification. When the temperature changes are too significant to be neglected, it is necessary to account for the thermal effects. In this paper, a method for controlling suction using the vapour equilibrium technique at different temperatures is presented. First, calibration of various saturated saline solutions was carried out from temperature of 20 degrees C to 60 degrees C. A mirror psychrometer was used for the measurement of relative humidity generated by saturated saline solutions at different temperatures. The results obtained are in good agreement with the data from the literature. This information was then used to determine the water retention properties of MX80 clay, which showed that the retention curve is shifting down with increasing of temperature

    Spin-orbit readout using thin films of topological insulator Sb2Te3 deposited by industrial magnetron sputtering

    Full text link
    Driving a spin-logic circuit requires the production of a large output signal by spin-charge interconversion in spin-orbit readout devices. This should be possible by using topological insulators, which are known for their high spin-charge interconversion efficiency. However, high-quality topological insulators have so far only been obtained on a small scale, or with large scale deposition techniques which are not compatible with conventional industrial deposition processes. The nanopatterning and electrical spin injection into these materials has also proven difficult due to their fragile structure and low spin conductance. We present the fabrication of a spin-orbit readout device from the topological insulator Sb2Te3 deposited by large-scale industrial magnetron sputtering on SiO2. Despite a modification of the Sb2Te3 layer structural properties during the device nanofabrication, we measured a sizeable output voltage that can be unambiguously ascribed to a spin-charge interconversion process

    Linker Histone H1 and H3K56 Acetylation are Antagonistic Regulators of Nucleosome Dynamics

    Get PDF
    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1
    corecore