187 research outputs found
First-principles methodology for quantum transport in multiterminal junctions
We present a generalized approach for computing electron conductance and I-V
characteristics in multiterminal junctions from first-principles. Within the
framework of Keldysh theory, electron transmission is evaluated employing an
O(N) method for electronic-structure calculations. The nonequilibrium Green
function for the nonequilibrium electron density of the multiterminal junction
is computed self-consistently by solving Poisson equation after applying a
realistic bias. We illustrate the suitability of the method on two examples of
four-terminal systems, a radialene molecule connected to carbon chains and two
crossed carbon chains brought together closer and closer. We describe charge
density, potential profile, and transmission of electrons between any two
terminals. Finally, we discuss the applicability of this technique to study
complex electronic devices.Comment: Will be coming out in JCP soo
Spontaneous polarization and piezoelectricity in boron nitride nanotubes
Ab initio calculations of the spontaneous polarization and piezoelectric
properties of boron nitride nanotubes show that they are excellent
piezoelectric systems with response values larger than those of piezoelectric
polymers. The intrinsic chiral symmetry of the nanotubes induces an exact
cancellation of the total spontaneous polarization in ideal, isolated nanotubes
of arbitrary indices. Breaking of this symmetry by inter-tube interaction or
elastic deformations induces spontaneous polarization comparable to those of
wurtzite semiconductors.Comment: 5 pages in PRB double column format, 3 figure
Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped-molecule connected to graphene nanoribbon electrodes
We study all-carbon-hydrogen molecular transistors where zigzag graphene
nanoribbons play the role of three metallic electrodes connected to a
ring-shaped 18-annulene molecule. Using the nonequilibrium Green function
formalism combined with density functional theory, recently extended to
multiterminal devices, we show that the proposed nanostructures exhibit
exponentially small transmission when the source and drain electrodes are
attached in a configuration that ensures destructive interference of electron
paths around the ring. The third electrode, functioning either as an attached
infinite-impedance voltage probe or as an "air-bridge" top gate covering half
of molecular ring, introduces dephasing that brings the transistor into the
"on" state with its transmission in the latter case approaching the maximum
limit for a single conducting channel device. The current through the latter
device can also be controlled in the far-from-equilibrium regime by applying a
gate voltage.Comment: 5 pages, 4 color figures, PDFLaTeX, slightly expanded version of the
published PRL articl
Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal
We investigate the electronic states around a single vacancy in silicon
crystal by using the Green's function approach. The triply degenerate vacancy
states within the band gap are found to be extended over a large distance
from the vacancy site and contribute to the reciprocal
temperature dependence of the quadrupole susceptibility resulting in the
elastic softening at low temperture. The Curie constant of the quadrupole
susceptibility for the trigonal mode () is largely
enhanced as compared to that for the tetragonal mode ().
The obtained results are consistent with the recent ultrasonic experiments in
silicon crystal down to 20 mK. We also calculate the dipole and octupole
susceptibilities and find that the octupole susceptibilities are extremely
enhannced for a specific mode.Comment: 6 pages, with 5 figure
Electric Field Induced Phase Transitions in Polymers: A Novel Mechanism for High Speed Energy Storage
This article discusses electric field induced phase transitions in polymers
- …