358 research outputs found

    Genetic variants of the promoter of the heme oxygenase-1 gene and their influence on cardiovascular disease (The Ludwigshafen Risk and Cardiovascular Health Study)

    Get PDF
    Background Heme oxygenase-1 is an inducible cytoprotective enzyme which handles oxidative stress by generating anti-oxidant bilirubin and vasodilating carbon monoxide. A (GT)n dinucleotide repeat and a -413A>T single nucleotide polymorphism have been reported in the promoter region of HMOX1 to both influence the occurrence of coronary artery disease and myocardial infarction. We sought to validate these observations in persons scheduled for coronary angiography. Methods We included 3219 subjects in the current analysis, 2526 with CAD including a subgroup of CAD and MI (n = 1339) and 693 controls. Coronary status was determined by coronary angiography. Risk factors and biochemical parameters (bilirubin, iron, LDL-C, HDL-C, and triglycerides) were determined by standard procedures. The dinucleotide repeat was analysed by PCR and subsequent sizing by capillary electrophoresis, the -413A>T polymorphism by PCR and RFLP. Results In the LURIC study the allele frequency for the -413A>T polymorphism is A = 0,589 and T = 0,411. The (GT)n repeats spread between 14 and 39 repeats with 22 (19.9%) and 29 (47.1%) as the two most common alleles. We found neither an association of the genotypes or allelic frequencies with any of the biochemical parameters nor with CAD or previous MI. Conclusion Although an association of these polymorphisms with the appearance of CAD and MI have been published before, our results strongly argue against a relevant role of the (GT)n repeat or the -413A>T SNP in the HMOX1 promoter in CAD or MI

    Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells

    Get PDF
    Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone marrow stromal cells (hMSC) into a neural stem cell-like population (hmNSC, for human marrow-derived NSC-like cells). These cells grow in neurosphere-like structures, express high levels of early neuroectodermal markers, such as the proneural genes NeuroD1, Neurog2, MSl1 as well as otx1 and nestin, but lose the characteristics of mesodermal stromal cells. In the presence of selected growth factors, hmNSCs can be differentiated into the three main neural phenotypes: astroglia, oligodendroglia and neurons. Clonal analysis demonstrates that individual hmNSCs are multipotent and retain the capacity to generate both glia and neurons. Our cell culture system provides a powerful tool for investigating the molecular mechanisms of neural differentiation in adult human NSCs. hmNSCs may therefore ultimately help to treat acute and chronic neurodegenerative diseases

    Which leukocyte subsets predict cardiovascular mortality? From the LUdwigshafen RIsk and Cardiovascular Health (LURIC) Study

    Get PDF
    AbstractObjectiveWhite blood cells are known to predict cardiovascular mortality, but form a highly heterogeneous population. It is therefore possible that specific subtypes disproportionally contribute to the prediction of cardiovascular outcomes. Therefore, we compared leukocyte subsets alone and in conjunction with an established inflammatory marker, C-reactive protein, for predicting death due to cardiovascular disease in a high-risk population.MethodsPatients, 3316, (mean [SD] age, 62 [10] years) scheduled for coronary angiography were prospectively followed up. Neutrophil, monocyte and lymphocyte counts were determined. Neutrophil and monocyte subsets were further analysed on the basis of surface expression of CD11b, CD18, CD31, CD40 and CD58. Lymphocytes were further subdivided into CD3, CD4, CD8, and CD19 subsets. The association between each marker and subsequent cardiovascular mortality was assessed using multivariable Cox regression models.ResultsDuring a median follow-up period of 7.8 years, 745 (22.5%) patients died, of which 484 were due to cardiovascular events. After entering conventional risk factors and removing patients with a current infection, neutrophil count (HR [95% CI]=1.90 [1.39, 2.60], P<0.001) and the neutrophil/lymphocyte ratio (HR [95% CI]=1.68 [1.24, 2.27], P=0.003) emerged as independent predictors of cardiovascular mortality. After mutual adjustment, neutrophil count (HR [95% CI]=1.87 [1.35, 2.50], P<0.001) out-performed C-reactive protein (HR [95% CI] 1.32 [0.99, 1.78], P=0.06) as a predictor of cardiovascular mortality.ConclusionsDue to its predictive potential and inexpensive determination, assessment of high neutrophil counts may represent an important marker, possibly improving cardiovascular mortality risk prediction

    Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study.

    Get PDF
    In type 1 diabetes, diabetes-associated autoantibodies, including islet cell antibodies (ICAs), reflect adaptive immunity, while increased serum N(ε)-carboxymethyl-lysine (CML), an advanced glycation end product, is associated with proinflammation. We assessed whether serum CML and autoantibodies predicted type 1 diabetes and to what extent they were determined by genetic or environmental factors. Of 7,287 unselected schoolchildren screened, 115 were ICA(+) and were tested for baseline CML and diabetes autoantibodies and followed (for median 7 years), whereas a random selection (n = 2,102) had CML tested. CML and diabetes autoantibodies were determined in a classic twin study of twin pairs discordant for type 1 diabetes (32 monozygotic, 32 dizygotic pairs). CML was determined by enzyme-linked immunosorbent assay, autoantibodies were determined by radioimmunoprecipitation, ICA was determined by indirect immunofluorescence, and HLA class II genotyping was determined by sequence-specific oligonucleotides. CML was increased in ICA(+) and prediabetic schoolchildren and in diabetic and nondiabetic twins (all P < 0.001). Elevated levels of CML in ICA(+) children were a persistent, independent predictor of diabetes progression, in addition to autoantibodies and HLA risk. In twins model fitting, familial environment explained 75% of CML variance, and nonshared environment explained all autoantibody variance. Serum CML, a glycotoxin, emerged as an environmentally determined diabetes risk factor, in addition to autoimmunity and HLA genetic risk, and a potential therapeutic target.J.C.H. was supported by the Children’s Diabetes Foundation in Denver, the University of Colorado Denver Diabetes and Endocrinology Research Center (National Institutes of Health [NIH] Grant P30-DK-57516), NIH Grant R01-DK-052068, and the Juvenile Diabetes Research Foundation International Autoimmunity Center Consortium; B.O.B. was supported by Deutsche Forschungsgemeinschaft (DFG SFB 518/ GRK 1041) and State Baden-Wuerttemberg Centre of Excellence “Metabolic Disorders”; and R.D.L. was supported by grants from the British Diabetic Twin Research Trust and the Juvenile Diabetes Research Foundation International. H.Be. was in receipt of an Eli Lilly award

    Association between Antibodies to the MR 67,000 Isoform of Glutamate Decarboxylase (GAD) and Type 1 (Insulin-Dependent) Diabetes Mellitus with Coexisting Autoimmune Polyendocrine Syndrome Type II

    Get PDF
    By using an immunoprecipitation assay, we analysed reactivity of autoantibodies to human recombinant GAD65 and GAD67 in sera from patients with autoimmune polyendocrine syndrome Type II (APS II) with and without Type 1 (insulin-dependent) diabetes mellitus (IDDM) compared to patients with organ-specific autoimmunity. Overall antibodies to GAD65 were correlated with IDDM in all study groups, whereas GAD67 antibodies were associated with IDDM when APS II coexists. Antibodies to GAD65 and GAD67 were detected in 13 (44.8%) and 7 (24.1%) out of 29 APS II patients with IDDM, but in only 4 (13.8%) and 2 (6.9%) out of 29 APS II patients without IDDM, respectively (p < 0.05). In short-standing IDDM (< 1 year), antibodies to GAD67 were significantly more frequent in patients with APS II (5 of 9 [55.6%] subjects) compared to matched diabetic patients without coexisting polyendocrinopathy (1 of 18 [5.6%] subjects) (p < 0.02). The levels of GAD65 (142 ± 90 AU) and GAD67 antibodies (178 ± 95 AU) were significantly higher in patients with polyglandular disease than in patients with isolated IDDM (91 ± 85 AU and 93 ± 57 AU) (p < 0.02). Interestingly, all 11 GAD67 antibody positive subjects also had GAD65 antibodies (p < 0.0001), and in 10 of 11 anti-GAD67 positive sera the GAD67 antibodies could be blocked by either GAD67 or GAD65, suggesting the presence of cross-reactive autoantibodies. No correlation was observed between GAD antibodies and age, sex or any particular associated autoimmune disease, besides IDDM. GAD antibodies were present in only 1 of 6 (16.7%) patients with APS Type I, in 1 of 26 (3.9%) patients with autoimmune thyroid disease but in none of the patients with Addison's disease (n = 16), pernicious anaemia (n = 7) or normal controls (n = 50). Our data suggest distinct antibody specificities reactive to GAD isoforms in APS II and IDDM, which might reflect different mechanisms of autoimmune response in IDDM with coexisting autoimmune polyendocrine autoimmunity

    Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality

    Get PDF
    Aims The purpose of this study was to identify novel genetic variants influencing circulating asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels and to evaluate whether they have a prognostic value on cardiovascular mortality. Methods and results We conducted a genome-wide association study on the methylarginine traits and investigated the predictive value of the new discovered variants on mortality. Our meta-analyses replicated the previously known locus for ADMA levels in DDAH1 (rs997251; P = 1.4 × 10−40), identified two non-synomyous polymorphisms for SDMA levels in AGXT2 (rs37369; P = 1.4 × 10−40 and rs16899974; P = 1.5 × 10−38) and one in SLC25A45 (rs34400381; P = 2.5 × 10−10). We also fine-mapped the AGXT2 locus for further independent association signals. The two non-synonymous AGXT2 variants independently associated with SDMA levels were also significantly related with short-term heart rate variability (HRV) indices in young adults. The major allele (C) of the novel non-synonymous rs16899974 (V498L) variant associated with decreased SDMA levels and an increase in the ratio between the low- and high-frequency spectral components of HRV (P = 0.00047). Furthermore, the SDMA decreasing allele (G) of the non-synomyous SLC25A45 (R285C) variant was associated with a lower resting mean heart rate during the HRV measurements (P = 0.0046), but not with the HRV indices. None of the studied genome-wide significant variants had any major effect on cardiovascular or total mortality in patients referred for coronary angiography. Conclusions AGXT2 has an important role in SDMA metabolism in humans. AGXT2 may additionally have an unanticipated role in the autonomic nervous system regulation of cardiac functio

    Identification of Type 1 Diabetes-Associated DNA Methylation Variable Positions That Precede Disease Diagnosis

    Get PDF
    Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is similar to 50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14(+) monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D-discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D-associated methylation variable positions (T1D-MVPs). We confirmed these T1D-MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D-discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D-MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D-MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D-MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease

    Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC

    Get PDF
    OBJECTIVE The MHC region harbors the strongest loci for latent autoimmune diabetes in adults (LADA); however, the strength of association is likely attenuated compared with that for childhood-onset type 1 diabetes. In this study, we recapitulate independent effects in the MHC class I region in a population with type 1 diabetes and then determine whether such conditioning in LADA yields potential genetic discriminators between the two subtypes within this region. RESEARCH DESIGN AND METHODS Chromosome 6 was imputed using SNP2HLA, with conditional analysis performed in type 1 diabetes case subjects (n = 1,985) and control subjects (n = 2,219). The same approach was applied to a LADA cohort (n = 1,428) using population-based control subjects (n = 2,850) and in a separate replication cohort (656 type 1 diabetes case, 823 LADA case, and 3,218 control subjects). RESULTS The strongest associations in the MHC class II region (rs3957146, beta [SE] = 1.44 [0.05]), as well as the independent effect of MHC class I genes, on type 1 diabetes risk, particularly HLA-B*39 (beta [SE] = 1.36 [0.17]), were confirmed. The conditional analysis in LADA versus control subjects showed significant association in the MHC class II region (rs3957146, beta [SE] = 1.14 [0.06]); however, we did not observe significant independent effects of MHC class I alleles in LADA. CONCLUSIONS In LADA, the independent effects of MHC class I observed in type 1 diabetes were not observed after conditioning on the leading MHC class II associations, suggesting that the MHC class I association may be a genetic discriminator between LADA and childhood-onset type 1 diabetes.Peer reviewe
    corecore