227 research outputs found

    Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo

    Get PDF
    Platelet adhesion and aggregation at sites of vascular injury are essential for normal hemostasis but may also lead to pathological thrombus formation, causing diseases such as myocardial infarction or stroke. Heterodimeric receptors of the integrin family play a central role in the adhesion and aggregation of platelets. In resting platelets, integrins exhibit a low affinity state for their ligands, and they shift to a high affinity state at sites of vascular injury. It has been proposed that direct binding of the cytoskeletal protein talin1 to the cytoplasmic domain of the integrin β subunits is necessary and sufficient to trigger the activation of integrins to this high affinity state, but direct in vivo evidence in support of this hypothesis is still lacking. Here, we show that platelets from mice lacking talin1 are unable to activate integrins in response to all known major platelet agonists while other cellular functions are still preserved. As a consequence, mice with talin-deficient platelets display a severe hemostatic defect and are completely resistant to arterial thrombosis. Collectively, these experiments demonstrate that talin is required for inside-out activation of platelet integrins in hemostasis and thrombosis

    Defective thrombus formation in mice lacking coagulation factor XII

    Get PDF
    Blood coagulation is thought to be initiated by plasma protease factor VIIa in complex with the membrane protein tissue factor. In contrast, coagulation factor XII (FXII)–mediated fibrin formation is not believed to play an important role for coagulation in vivo. We used FXII-deficient mice to study the contributions of FXII to thrombus formation in vivo. Intravital fluorescence microscopy and blood flow measurements in three distinct arterial beds revealed a severe defect in the formation and stabilization of platelet-rich occlusive thrombi. Although FXII-deficient mice do not experience spontaneous or excessive injury-related bleeding, they are protected against collagen- and epinephrine-induced thromboembolism. Infusion of human FXII into FXII-null mice restored injury-induced thrombus formation. These unexpected findings change the long-standing concept that the FXII-induced intrinsic coagulation pathway is not important for clotting in vivo. The results establish FXII as essential for thrombus formation, and identify FXII as a novel target for antithrombotic therapy

    Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis

    Get PDF
    Formation of fibrin is critical for limiting blood loss at a site of blood vessel injury (hemostasis), but may also contribute to vascular thrombosis. Hereditary deficiency of factor XII (FXII), the protease that triggers the intrinsic pathway of coagulation in vitro, is not associated with spontaneous or excessive injury-related bleeding, indicating FXII is not required for hemostasis. We demonstrate that deficiency or inhibition of FXII protects mice from ischemic brain injury. After transient middle cerebral artery occlusion, the volume of infarcted brain in FXII-deficient and FXII inhibitor–treated mice was substantially less than in wild-type controls, without an increase in infarct-associated hemorrhage. Targeting FXII reduced fibrin formation in ischemic vessels, and reconstitution of FXII-deficient mice with human FXII restored fibrin deposition. Mice deficient in the FXII substrate factor XI were similarly protected from vessel-occluding fibrin formation, suggesting that FXII contributes to pathologic clotting through the intrinsic pathway. These data demonstrate that some processes involved in pathologic thrombus formation are distinct from those required for normal hemostasis. As FXII appears to be instrumental in pathologic fibrin formation but dispensable for hemostasis, FXII inhibition may offer a selective and safe strategy for preventing stroke and other thromboembolic diseases

    A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation

    Get PDF
    The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE−/− mice before the development of manifest atherosclerotic lesions. Platelet–endothelial cell interaction involved both platelet glycoprotein (GP)Ibα and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE−/− mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process

    Aspirin Induces Platelet Receptor Shedding via ADAM17 (TACE)

    Get PDF
    Aspirin is effective in the therapy of cardiovascular diseases, because it causes acetylation of cyclooxygenase 1 (COX-1) leading to irreversible inhibition of platelets. Additional mechanisms can be suspected, because patients treated with other platelet COX inhibitors such as indomethacin do not display an increased bleeding tendency as observed for aspirin-treated patients. Recently, aspirin and other anti-inflammatory drugs were shown to induce shedding of L-selectin in neutrophils in a metalloproteinase-dependent manner. Therefore, we investigated the effects of aspirin on the von Willebrand Factor receptor complex glycoprotein (GP) Ib-V-IX, whose lack or dysfunction causes bleeding in patients. As quantified by fluorescence-activated cell sorting analysis in whole blood, aspirin, but not its metabolite salicylic acid, induced dose-dependent shedding of human and murine GPIbalpha and GPV from the platelet surface, whereas other glycoproteins remained unaffected by this treatment. Biotinylated fragments of GPV were detected by immunoprecipitation in the supernatant of washed mouse platelets, and the expression level of GPIbalpha was decreased in these platelets as measured by Western blot analysis. Although shedding occurred normally in COX-1-deficient murine platelets, shedding was completely blocked by a broad-range metalloproteinase inhibitor and, more importantly, in mouse platelets expressing an inactive form of ADAM17. Shed fragments of GPIbalpha and GPV were elevated in the plasma of aspirin-injected mice compared with animals injected with control buffer. These data demonstrate that aspirin at high concentrations induces shedding of GPIbalpha and GPV by an ADAM17-dependent mechanism and that this process can occur in vivo

    Neutrophil infiltration to the brain is platelet-dependent, and is reversed by blockade of platelet GPIbα

    Get PDF
    Neutrophils are key components of the innate immune response, providing host defence against infection and being recruited to non-microbial injury sites. Platelets act as a trigger for neutrophil extravasation to inflammatory sites but mechanisms and tissue-specific aspects of these interactions are currently unclear. Here, we use bacterial endotoxin in mice to trigger an innate inflammatory response in different tissues and measure neutrophil invasion with or without platelet reduction. We show that platelets are essential for neutrophil infiltration to the brain, peritoneum and skin. Neutrophil numbers do not rise above basal levels in the peritoneum and skin and are decreased (~60%) in the brain when platelet numbers are reduced. In contrast neutrophil infiltration in the lung is unaffected by platelet reduction, up-regulation of CXCL-1 (2.4-fold) and CCL5 (1.4-fold) acting as a compensatory mechanism in platelet-reduced mice during lung inflammation. In brain inflammation targeting platelet receptor GPIbalpha results in a significant decrease (44%) in platelet-mediated neutrophil invasion, while maintaining platelet numbers in the circulation. These results suggest that therapeutic blockade of platelet GPIbalpha could limit the harmful effects of excessive inflammation while minimizing haemorrhagic complications of platelet reduction in the brain. The data also demonstrate the ability to target damaging brain inflammation in stroke and related disorders without compromising lung immunity and hence risk of pneumonia, a major complication post stroke. In summary, our data reveal an important role for platelets in neutrophil infiltration to various tissues, including the brain, and so implicate platelets as a key, targetable component of cerebrovascular inflammatory disease or injury

    Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life

    Get PDF
    Mammals transport blood through a high-pressure, closed vascular network and lymph through a low-pressure, open vascular network. These vascular networks connect at the lymphovenous (LV) junction, where lymph drains into blood and an LV valve (LVV) prevents backflow of blood into lymphatic vessels. Here we describe an essential role for platelets in preventing blood from entering the lymphatic system at the LV junction. Loss of CLEC2, a receptor that activates platelets in response to lymphatic endothelial cells, resulted in backfilling of the lymphatic network with blood from the thoracic duct (TD) in both neonatal and mature mice. Fibrin-containing platelet thrombi were observed at the LVV and in the terminal TD in wild-type mice, but not Clec2-deficient mice. Analysis of mice lacking LVVs or lymphatic valves revealed that platelet-mediated thrombus formation limits LV backflow under conditions of impaired valve function. Examination of mice lacking integrin-mediated platelet aggregation indicated that platelet aggregation stabilizes thrombi that form in the lymphatic vascular environment to prevent retrograde blood flow. Collectively, these studies unveil a newly recognized form of hemostasis that functions with the LVV to safeguard the lymphatic vascular network throughout life

    Lymphatic blood filling in CLEC-2-deficient mouse models

    Get PDF
    C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin
    • …
    corecore