34 research outputs found

    X-ray structure of the dimeric cytochrome bc1 complex from the soil bacterium Paracoccus denitrificans at 2.7-Ã… resolution

    Get PDF
    AbstractThe respiratory cytochrome bc1 complex is a fundamental enzyme in biological energy conversion. It couples electron transfer from ubiquinol to cytochrome c with generation of proton motive force which fuels ATP synthesis. The complex from the α-proteobacterium Paracoccus denitrificans, a model for the medically relevant mitochondrial complexes, lacked structural characterization. We show by LILBID mass spectrometry that truncation of the organism-specific, acidic N-terminus of cytochrome c1 changes the oligomerization state of the enzyme to a dimer. The fully functional complex was crystallized and the X-ray structure determined at 2.7-Å resolution. It has high structural homology to mitochondrial complexes and to the Rhodobacter sphaeroides complex especially for subunits cytochrome b and ISP. Species-specific binding of the inhibitor stigmatellin is noteworthy. Interestingly, cytochrome c1 shows structural differences to the mitochondrial and even between the two Rhodobacteraceae complexes. The structural diversity in the cytochrome c1 surface facing the ISP domain indicates low structural constraints on that surface for formation of a productive electron transfer complex. A similar position of the acidic N-terminal domains of cytochrome c1 and yeast subunit QCR6p is suggested in support of a similar function. A model of the electron transfer complex with membrane-anchored cytochrome c552, the natural substrate, shows that it can adopt the same orientation as the soluble substrate in the yeast complex. The full structural integrity of the P. denitrificans variant underpins previous mechanistic studies on intermonomer electron transfer and paves the way for using this model system to address open questions of structure/function relationships and inhibitor binding

    Dimerization of human 5-lipoxygenase

    Get PDF
    Human 5-lipoxygenase (5-LO) can form dimers as shown here via native gel electrophoresis, gel filtration chromatography and LILBID (laser induced liquid bead ion desorption) mass spectrometry. After glutathionylation of 5-LO by diamide/glutathione treatment, dimeric 5-LO was no longer detectable and 5-LO almost exclusively exists in the monomeric form which showed full catalytic activity. Incubation of 5-LO with diamide alone led to a disulfide-bridged dimer and to oligomer formation which displays a strongly reduced catalytic activity. The bioinformatic analysis of the 5-LO surface for putative protein-protein interaction domains and molecular modeling of the dimer interface suggests a head to tail orientation of the dimer which also explains the localization of previously reported ATP binding sites. This interface domain was confirmed by the observation that 5-LO dimer formation and inhibition of activity by diamide was largely prevented when four cysteines (C159S, C300S, C416S, C418S) in this domain were mutated to serine

    Vibrational Predissociation of p

    No full text

    Infrared Depletion Spectroscopy and Structure of the 2-Aminopyridine Dimer †

    No full text
    corecore