14 research outputs found

    Impaired belief updating and devaluation in adult women with bulimia nervosa

    Get PDF
    Recent models of bulimia nervosa (BN) propose that binge-purge episodes ultimately become automatic in response to cues and insensitive to negative outcomes. Here, we examined whether women with BN show alterations in instrumental learning and devaluation sensitivity using traditional and computational modeling analyses of behavioral data. Adult women with BN (n = 30) and group-matched healthy controls (n = 31) completed a task in which they first learned stimulus-response-outcome associations. Then, participants were required to repeatedly adjust their responses in a “baseline test”, when different sets of stimuli were explicitly devalued, and in a “slips-of-action test”, when outcomes instead of stimuli were devalued. The BN group showed intact behavioral sensitivity to outcome devaluation during the slips-of-action test, but showed difficulty overriding previously learned stimulus-response associations on the baseline test. Results from a Bayesian learner model indicated that this impaired performance could be accounted for by a slower pace of belief updating when a new set of previously learned responses had to be inhibited (p = 0.036). Worse performance and a slower belief update in the baseline test were each associated with more frequent binge eating (p = 0.012) and purging (p = 0.002). Our findings suggest that BN diagnosis and severity are associated with deficits in flexibly updating beliefs to withhold previously learned responses to cues. Additional research is needed to determine whether this impaired ability to adjust behavior is responsible for maintaining automatic and persistent binge eating and purging in response to internal and environmental cues

    Permian to earliest Cretaceous climatic oscillations in the eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope data

    No full text

    Ocean Redox State at 2500‒500 Ma: Modern Concepts

    No full text

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    No full text
    Measurements of electrons from Îœe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of missing energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    No full text
    International audienceMeasurements of electrons from Îœe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of missing energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons
    corecore