4,465 research outputs found
Generation of three-dimensional prototype models based on cone beam computed tomography
Purpose: The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Methods: Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Results: Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Conclusions: Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensiv
Scanning tunneling microscopy and kinetic Monte Carlo investigation of Cesium superlattices on Ag(111)
Cesium adsorption structures on Ag(111) were characterized in a
low-temperature scanning tunneling microscopy experiment. At low coverages,
atomic resolution of individual Cs atoms is occasionally suppressed in regions
of an otherwise hexagonally ordered adsorbate film on terraces. Close to step
edges Cs atoms appear as elongated protrusions along the step edge direction.
At higher coverages, Cs superstructures with atomically resolved hexagonal
lattices are observed. Kinetic Monte Carlo simulations model the observed
adsorbate structures on a qualitative level.Comment: 8 pages, 7 figure
A relativistic parton cascade with radiation
We consider the evolution of a parton system which is formed at the central
rapidity region just after an ultrarelativistic heavy ion collision. The
evolution of the system, which is composed of gluons, quarks and antiquarks, is
described by a relativistic Boltzmann equations with collision terms including
radiation and retardation effects. The equations are solved by the test
particle method using Monte-Carlo sampling. Our simulations do not show any
evidence of kinetic equilibration, unless the cross sections are artificially
increased to unrealistically large values.Comment: 14 pages, 4 figure
Graph embedding in SYNCHEM2, an expert system for organic synthesis discovery
AbstractGraph embedding (subgraph isomorphism) is an NP-complete problem of great theoretical and practical importance in the sciences, especially chemistry and computer science. This paper presents positive test results for techniques to speed embedding by modeling graphs with subroutines, precalculating edge tables, turning recursion into iteration, and using search-ordering heuristics.The expert system synchem2 searches for synthesis routes of organic molecules without the online guidance of a user, and this paper examines how embedding information helps to implement the central operations of synchem2: selection, application, and evaluation of chemical reactions. The paper also outlines the architecture of synchem2, analyzes the computational time complexity of embedding and related problems in graph isomorphism and canonical chemical naming, and suggests topics and techniques for further research
Light emission from a scanning tunneling microscope: Fully retarded calculation
The light emission rate from a scanning tunneling microscope (STM) scanning a
noble metal surface is calculated taking retardation effects into account. As
in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev.
B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric
properties of tip and sample are described by experimentally measured
dielectric functions. The calculations are based on exact diffraction theory
through the vector equivalent of the Kirchoff integral. The present results are
qualitatively similar to those of the non-retarded calculations. The light
emission spectra have pronounced resonance peaks due to the formation of a
tip-induced plasmon mode localized to the cavity between the tip and the
sample. At a quantitative level, the effects of retardation are rather small as
long as the sample material is Au or Cu, and the tip consists of W or Ir.
However, for Ag samples, in which the resistive losses are smaller, the
inclusion of retardation effects in the calculation leads to larger changes:
the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These
changes improve the agreement with experiment. For a Ag sample and an Ir tip,
the quantum efficiency is 10 emitted photons in the visible
frequency range per tunneling electron. A study of the energy dissipation into
the tip and sample shows that in total about 1 % of the electrons undergo
inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear
in Phys. Rev. B (15 October 1998
Mud extrusion dynamics constrained from 3D seismics in the Mercator Mud Volcano. El Arraiche mud volcano field, Gulf of Cadiz
Located on the western Moroccan continental shelf of the Gulf of Cadiz, the Mercator Mud Volcano (MMV) is one of a total of eight mud volcanoes which compose the El Arraiche mud volcano field. We collected a high-resolution P-cable 3D seismic cube during the Charles Darwin cruise 178 in April 2006, covering an area of 25 km2. The data image the upper 500-1000 m of the MMV. El Arraiche mud volcano field is located in the top of the Tortonian accretionary wedge in the Gulf of Cadiz, between 200 and 700 m water deep. Despite of the general compressive trend of the Gulf of Cadiz due to the westward movement of the Gibraltar arc, the local regimen of the western Moroccan margin is extensional in the study area. The MMV is a 2.5 km diameter positive conical structure at 350 m water deep that rises from the flank of a salt diapir. The high-resolution 3D cube shows the main internal structure in the southern flank of an anticline and a secondary structure southwest of it. Parallel and continuous reflections onlapping the anticline structure define the seismic character outside the mud volcano. The body of the main structure shows the typical "Christmas tree" features related to mud flow deposits. The preliminary interpretation of the 3D seismic cube shows four main mud flows southwestward oriented from the main structure and interfingered into the hemipelagic regional sedimentation. From deeper to shallower, the flows are located approximately at 0.870 s, 0.838 s, 0.774 s, and 0.685 s travel time, respectively. The extrusions correlate with the main seismic sequences observed in the surrounding hemipelagic deposits. The maximum run-out distance for the mud flows is approximately 1 km southwestward from the main structure, which corresponds to the third youngest mud flow described. The secondary "Christmas tree" structure penetrates the hemipelagic sediments almost to the seabed. Its seismic character is defined by low amplitude and chaotic signal. Several mud flows are interfingered with the surrounding sediments and, in some cases, overlap the mud flows from the main structure but they are less extensive and thinner but more frequent than those from the main structure. The MMV is an active mud volcano and depends on complex fluid and mud dynamics. The existence of a secondary and apparently "abandoned" structure indicates the variation of mud pathways during the evolution of its plumbing system
Role of elastic scattering in electron dynamics at ordered alkali overlayers on Cu(111)
Scanning tunneling spectroscopy of p(2x2) Cs and Na ordered overlayers on
Cu(111) reveals similar line widths of quasi two-dimensional quantum well
states despite largely different binding energies. Detailed calculations show
that 50% of the line widths are due to electron-phonon scattering while
inelastic electron-electron scattering is negligible. A frequently ignored
mechanism for ordered structures, i.e., enhanced elastic scattering due to
Brillouin zone back folding, contributes the remaining width.Comment: 4 pages, 2 figures, 1 tabl
Spherical Casimir energies and Dedekind sums
Casimir energies on space-times having general lens spaces as their spatial
sections are shown to be given in terms of generalised Dedekind sums related to
Zagier's. These are evaluated explicitly in certain cases as functions of the
order of the lens space. An easily implemented recursion approach is used.Comment: 18 pages, 2 figures, v2:typos corrected, inessential equation in
Discussion altered. v3:typos corrected, 1 reference and comments added.
v4:typos corrected. Ancillary results added in an appendi
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Subsequence clustering of multivariate time series is a useful tool for
discovering repeated patterns in temporal data. Once these patterns have been
discovered, seemingly complicated datasets can be interpreted as a temporal
sequence of only a small number of states, or clusters. For example, raw sensor
data from a fitness-tracking application can be expressed as a timeline of a
select few actions (i.e., walking, sitting, running). However, discovering
these patterns is challenging because it requires simultaneous segmentation and
clustering of the time series. Furthermore, interpreting the resulting clusters
is difficult, especially when the data is high-dimensional. Here we propose a
new method of model-based clustering, which we call Toeplitz Inverse
Covariance-based Clustering (TICC). Each cluster in the TICC method is defined
by a correlation network, or Markov random field (MRF), characterizing the
interdependencies between different observations in a typical subsequence of
that cluster. Based on this graphical representation, TICC simultaneously
segments and clusters the time series data. We solve the TICC problem through
alternating minimization, using a variation of the expectation maximization
(EM) algorithm. We derive closed-form solutions to efficiently solve the two
resulting subproblems in a scalable way, through dynamic programming and the
alternating direction method of multipliers (ADMM), respectively. We validate
our approach by comparing TICC to several state-of-the-art baselines in a
series of synthetic experiments, and we then demonstrate on an automobile
sensor dataset how TICC can be used to learn interpretable clusters in
real-world scenarios.Comment: This revised version fixes two small typos in the published versio
- …