110 research outputs found

    Feynman's Path Integrals and Bohm's Particle Paths

    Full text link
    Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation.Comment: 4 pages LaTeX, no figures; v2 shortened a bi

    Time of Arrival from Bohmian Flow

    Get PDF
    We develop a new conception for the quantum mechanical arrival time distribution from the perspective of Bohmian mechanics. A detection probability for detectors sensitive to quite arbitrary spacetime domains is formulated. Basic positivity and monotonicity properties are established. We show that our detection probability improves and generalises earlier proposals by Leavens and McKinnon. The difference between the two notions is illustrated through application to a free wave packet.Comment: 18 pages, 8 figures, to appear in Journ. Phys. A; representation of ref. 5 improved (thanks to Rick Leavens

    Hypersurface Bohm-Dirac models

    Full text link
    We define a class of Lorentz invariant Bohmian quantum models for N entangled but noninteracting Dirac particles. Lorentz invariance is achieved for these models through the incorporation of an additional dynamical space-time structure provided by a foliation of space-time. These models can be regarded as the extension of Bohm's model for N Dirac particles, corresponding to the foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to more general foliations. As with Bohm's model, there exists for these models an equivariant measure on the leaves of the foliation. This makes possible a simple statistical analysis of position correlations analogous to the equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio

    Times of arrival: Bohm beats Kijowski

    Full text link
    We prove that the Bohmian arrival time of the 1D Schroedinger evolution violates the quadratic form structure on which Kijowski's axiomatic treatment of arrival times is based. Within Kijowski's framework, for a free right moving wave packet, the various notions of arrival time (at a fixed point x on the real line) all yield the same average arrival time. We derive an inequality relating the average Bohmian arrival time to the one of Kijowksi. We prove that the average Bohmian arrival time is less than Kijowski's one if and only if the wave packet leads to position probability backflow through x. Otherwise the two average arrival times coincide.Comment: 9 page

    Locality and Causality in Hidden Variables Models of Quantum Theory

    Get PDF
    Motivated by Popescu's example of hidden nonlocality, we elaborate on the conjecture that quantum states that are intuitively nonlocal, i.e., entangled, do not admit a local causal hidden variables model. We exhibit quantum states which either (i) are nontrivial counterexamples to this conjecture or (ii) possess a new kind of more deeply hidden irreducible nonlocality. Moreover, we propose a nonlocality complexity classification scheme suggested by the latter possibility. Furthermore, we show that Werner's (and similar) hidden variables models can be extended to an important class of generalized observables. Finally a result of Fine on the equivalence of stochastic and deterministic hidden variables is generalized to causal models.Comment: revised version, 21 pages, submitted to Physical Review

    A microscopic derivation of the quantum mechanical formal scattering cross section

    Full text link
    We prove that the empirical distribution of crossings of a "detector'' surface by scattered particles converges in appropriate limits to the scattering cross section computed by stationary scattering theory. Our result, which is based on Bohmian mechanics and the flux-across-surfaces theorem, is the first derivation of the cross section starting from first microscopic principles.Comment: 28 pages, v2: Typos corrected, layout improved, v3: Typos corrected. Accepted for publication in Comm. Math. Phy

    On the exit statistics theorem of many particle quantum scattering

    Full text link
    We review the foundations of the scattering formalism for one particle potential scattering and discuss the generalization to the simplest case of many non interacting particles. We point out that the "straight path motion" of the particles, which is achieved in the scattering regime, is at the heart of the crossing statistics of surfaces, which should be thought of as detector surfaces. We sketch a proof of the relevant version of the many particle flux across surfaces theorem and discuss what needs to be proven for the foundations of scattering theory in this context.Comment: 15 pages, 4 figures; to appear in the proceedings of the conference "Multiscale methods in Quantum Mechanics", Accademia dei Lincei, Rome, December 16-20, 200

    Quantile Motion and Tunneling

    Full text link
    The concepts of quantile position, trajectory, and velocity are defined. For a tunneling quantum mechanical wave packet, it is proved that its quantile position always stays behind that of a free wave packet with the same initial parameters. In quantum mechanics the quantile trajectories are mathematically identical to Bohm's trajectories. A generalization to three dimensions is given.Comment: 13 pages, LaTeX, elsart, 3 ps figures, submitted to Phys. Lett.

    Bohmian transmission and reflection dwell times without trajectory sampling

    Full text link
    Within the framework of Bohmian mechanics dwell times find a straightforward formulation. The computation of associated probabilities and distributions however needs the explicit knowledge of a relevant sample of trajectories and therefore implies formidable numerical effort. Here a trajectory free formulation for the average transmission and reflection dwell times within static spatial intervals [a,b] is given for one-dimensional scattering problems. This formulation reduces the computation time to less than 5% of the computation time by means of trajectory sampling.Comment: 14 pages, 7 figures; v2: published version, significantly revised and shortened (former sections 2 and 3 omitted, appendix A added, simplified mathematics
    • …
    corecore