We prove that the Bohmian arrival time of the 1D Schroedinger evolution
violates the quadratic form structure on which Kijowski's axiomatic treatment
of arrival times is based. Within Kijowski's framework, for a free right moving
wave packet, the various notions of arrival time (at a fixed point x on the
real line) all yield the same average arrival time. We derive an inequality
relating the average Bohmian arrival time to the one of Kijowksi. We prove that
the average Bohmian arrival time is less than Kijowski's one if and only if the
wave packet leads to position probability backflow through x. Otherwise the two
average arrival times coincide.Comment: 9 page