28 research outputs found

    The Effect of Dexamethasone, Adrenergic and Cholinergic Receptor Agonists on Phospholipid Metabolism in Human Osteoarthritic Synoviocytes

    Get PDF
    Phospholipids (PLs) possess the unique ability to contribute to synovial joint lubrication. The aim of our study was to determine for the first time the effect of dexamethasone and some adrenergic and cholinergic agonists on the biosynthesis and release of PLs from human fibroblast-like synoviocytes (FLS). Osteoarthritic human knee FLS were treated with dexamethasone, terbutaline, epinephrine, carbachol, and pilocarpine, or the glucocorticoid receptor antagonist RU 486. Simultaneously PL biosynthesis was determined through the incorporation of stable isotope-labeled precursors into PLs. Radioactive isotope-labeled precursors were used to radiolabel PLs for the subsequent quantification of their release into nutrient media. Lipids were extracted and quantified using electrospray ionization tandem mass spectrometry or liquid scintillation counting. Dexamethasone significantly decreased the biosynthesis of phosphatidylcholine, phosphatidylethanolamine (PE), PE-based plasmalogen, and sphingomyelin. The addition of RU 486 abolished these effects. A release of PLs from FLS into nutrient media was not recognized by any of the tested agents. None of the adrenergic or cholinergic receptor agonists modulated the PL biosynthesis. We demonstrate for the first time an inhibitory effect of dexamethasone on the PL biosynthesis of FLS from human knees. Moreover, our study indicates that the PL metabolism of synovial joints and lungs are differently regulated

    Process optimized minimally invasive total hip replacement

    Get PDF
    The purpose of this study was to analyse a new concept of using the the minimally invasive direct anterior approach (DAA) in total hip replacement (THR) in combination with the leg positioner (Rotex- Table) and a modified retractor system (Condor). We evaluated retrospectively the first 100 primary THR operated with the new concept between 2009 and 2010, regarding operation data, radiological and clinical outcome (HOOS). All surgeries were perfomed in a standardized operation technique including navigation. The average age of the patients was 68 years (37 to 92 years), with a mean BMI of 26.5 (17 to 43). The mean time of surgery was 80 min. (55 to 130 min). The blood loss showed an average of 511.5 mL (200 to 1000 mL). No intra-operative complications occurred. The postoperative complication rate was 6%. The HOOS increased from 43 points pre-operatively to 90 (max 100 points) 3 months after surgery. The radiological analysis showed an average cup inclination of 43° and a leg length discrepancy in a range of +/− 5 mm in 99%. The presented technique led to excellent clinic results, showed low complication rates and allowed correct implant positions although manpower was saved

    The Effect of Dexamethasone, Adrenergic and Cholinergic Receptor Agonists on Phospholipid Metabolism in Human Osteoarthritic Synoviocytes

    No full text
    Phospholipids (PLs) possess the unique ability to contribute to synovial joint lubrication. The aim of our study was to determine for the first time the effect of dexamethasone and some adrenergic and cholinergic agonists on the biosynthesis and release of PLs from human fibroblast-like synoviocytes (FLS). Osteoarthritic human knee FLS were treated with dexamethasone, terbutaline, epinephrine, carbachol, and pilocarpine, or the glucocorticoid receptor antagonist RU 486. Simultaneously PL biosynthesis was determined through the incorporation of stable isotope-labeled precursors into PLs. Radioactive isotope-labeled precursors were used to radiolabel PLs for the subsequent quantification of their release into nutrient media. Lipids were extracted and quantified using electrospray ionization tandem mass spectrometry or liquid scintillation counting. Dexamethasone significantly decreased the biosynthesis of phosphatidylcholine, phosphatidylethanolamine (PE), PE-based plasmalogen, and sphingomyelin. The addition of RU 486 abolished these effects. A release of PLs from FLS into nutrient media was not recognized by any of the tested agents. None of the adrenergic or cholinergic receptor agonists modulated the PL biosynthesis. We demonstrate for the first time an inhibitory effect of dexamethasone on the PL biosynthesis of FLS from human knees. Moreover, our study indicates that the PL metabolism of synovial joints and lungs are differently regulated

    Interleukin-1 Induces the Release of Lubricating Phospholipids from Human Osteoarthritic Fibroblast-like Synoviocytes

    No full text
    (1) Background: Synovial fluid (SF) from knee joints with osteoarthritis (OA) has increased levels of phospholipids (PL). We have reported earlier that TGF-ß and IGF-1 stimulate fibroblast-like synoviocytes (FLS) to synthesize increased amounts of PLs. The current study examined whether IL-1ß induces the release of PLs in FLS and the underlying mechanism. (2) Methods: Cultured human OA FLS were treated with IL-1ß alone and with pathway inhibitors or with synthetic liver X receptor (LXR) agonists. Cholesterol hydroxylases, ABC transporters, apolipoproteins (APO), LXR, sterol regulatory binding proteins (SREBPs), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) were analyzed by RT-PCR, Western blot, and ELISA. The release of radiolabeled PLs from FLS was determined, and statistical analysis was performed using R (N = 5–9). (3) Results: Like synthetic LXR agonists, IL-1ß induced a 1.4-fold greater release of PLs from FLS. Simultaneously, IL-1ß upregulated the level of the PL transporter ABCA1 and of cholesterol hydroxylases CH25H and CYP7B1. IL-1ß and T0901317 stimulated the expression of SREBP1c, whereas only T0901317 enhanced SREBP2, HMGCR, APOE, LXRα, and ABCG1 additionally. (4) Conclusions: IL-1ß partially controls PL levels in OA-SF by affecting the release of PLs from FLS. Our data show that IL-1ß upregulates cholesterol hydroxylases and thus the formation of oxysterols, which, as natural agonists of LXR, increase the level of active ABCA1, in turn enhancing the release of PLs

    Growth factors regulate phospholipid biosynthesis in human fibroblast-like synoviocytes obtained from osteoarthritic knees

    Get PDF
    Abstract Elevated levels of growth factors and phospholipids (PLs) have been found in osteoarthritic synovial fluid (SF), although the metabolic regulation of PLs is currently unknown. This study aimed to determine the effects of growth factors on the biosynthesis of PLs by fibroblast-like synoviocytes (FLS) obtained from human osteoarthritic knee joints. Electrospray ionization tandem mass spectrometry was applied to analyse the newly synthesized PLs. In the presence of stable isotope-labelled PL precursors, cultured FLS were treated with either transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP)-2, BMP-4, BMP-7 or insulin-like growth factor-1 (IGF-1) alone or in combination with specific inhibitors of cell signalling pathways. TGF-β1 and IGF-1 markedly stimulated the biosynthesis of phosphatidylcholine (PC) before sphingomyelin (SM) and lysophosphatidylcholine (LPC) species were stimulated. BMPs elaborated less pronounced effects. The BMPs tested have different potentials to induce the biosynthesis of phosphatidylethanolamine (PE) and PE-based plasmalogens. Our study shows for the first time that TGF-β1 and IGF-1 substantially regulate the biosynthesis of PC, SM and LPC in human FLS. The functional consequences of elevated levels of PLs require additional study. The BMPs tested may be joint protective in that they upregulate PE-based plasmalogens that function as endogenous antioxidants against reactive oxygen species
    corecore