104 research outputs found

    Monoclonal antibodies against the human lymphocyte differentiation antigen CD 76 bind to gangliosides

    Get PDF
    AbstractTwo monoclonal antibodies, HD 66 and CRIS-4, by which the new CD 76 B-cell-associated cluster was defined, bound to several gangliosides (sialic acid containing glycolipids) of different polarity. One of the gangliosides recognized by HD 66 could be identified as NeuAcα2-6Galβl-4GlcNAcβl-3Galβl-4Glc-βl-l'Cer. This antigen was enzymatically synthesized. Sialidase treatment of the ganglioside antigens abolished binding of HD 66 and CRIS-4

    Quantitative detection of DNMT3A R882H mutation in acute myeloid leukemia

    Get PDF
    Background DNMT3A mutations represent one of the most frequent gene alterations detectable in acute myeloid leukemia (AML) with normal karyotype. Although various recurrent somatic mutations of DNMT3A have been described, the most common mutation is located at R882 in the methyltransferase domain of the gene. Because of their prognostic significance and high stability during disease evolution, DNMT3A mutations might represent highly informative biomarkers for prognosis and outcome of disease. Methods We describe an allele-specific PCR with a Blocking reagent for the quantitative detection of DNMT3A R882H mutation providing the possibility to analyze the quantitative amount of mutation during the course of disease. Next, we analyzed 62 follow- up samples from 6 AML patients after therapy and allogeneic stem cell transplantation (alloSCT). Results We developed an ASB-PCR assay for quantitative analysis of R882H DNMT3A mutation. After optimization of blocker concentration, a R882H-positive plasmid was constructed to enhance the accuracy of the sensitivity of quantitative detection. The assay displayed a high efficiency and sensitivity up to 10−3. The reproducibility of assay analyzed using follow-up samples showed the standard deviation less than 3.1 %. This assay displayed a complete concordance with sequencing and endonuclease restriction analysis. We have found persistence of DNMT3A R882H mutations in complete remission (CR) after standard cytoreduction therapy that could be indicating presence of DNMT3A mutation in early pre-leukemic stem cells that resist chemotherapy. The loss of correlation between NPM1 and DNMT3A in CR could be associated with evolution of pre-leukemic and leukemic clones. In patients with CR with complete donor chimerism after alloSCT, we have found no DNMT3A R882H. In relapsed patients, all samples showed an increasing of both NPM1 and DNMT3A mutated alleles. This suggests at least in part the presence of NPM1 and DNMT3A mutations in the same cell clone. Conclusion We developed a rapid and reliable method for quantitative detection of DNMT3A R882H mutations in AML patients. Quantitative detection of DNMT3A R882H mutations at different time points of AML disease enables screening of follow-up samples. This could provide additional information about the role of DNMT3A mutations in development and progression of AML

    Nuclear Factor κB–dependent Gene Expression Profiling of Hodgkin's Disease Tumor Cells, Pathogenetic Significance, and Link to Constitutive Signal Transducer and Activator of Transcription 5a Activity

    Get PDF
    Constitutive nuclear nuclear factor (NF)-κB activity is observed in a variety of hematopoietic and solid tumors. Given the distinctive role of constitutive NF-κB for Hodgkin and Reed-Sternberg (HRS) cell viability, we performed molecular profiling in two Hodgkin's disease (HD) cell lines to identify NF-κB target genes. We recognized 45 genes whose expression in both cell lines was regulated by NF-κB. The NF-κB–dependent gene profile comprises chemokines, cytokines, receptors, apoptotic regulators, intracellular signaling molecules, and transcription factors, the majority of which maintain a marker-like expression in HRS cells. Remarkably, we found 17 novel NF-κB target genes. Using chromatin immunoprecipitation we demonstrate that NF-κB is recruited directly to the promoters of several target genes, including signal transducer and activator of transcription (STAT)5a, interleukin-13, and CC chemokine receptor 7. Intriguingly, NF-κB positively regulates STAT5a expression and signaling pathways in HRS cells, and promotes its persistent activation. In fact, STAT5a overexpression was found in most tumor cells of tested patients with classical HD, indicating a critical role for HD. The gene profile underscores a central role of NF-κB in the pathogenesis of HD and potentially of other tumors with constitutive NF-κB activation

    Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis

    Get PDF
    B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)–only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1–Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2

    Genetic dissection of apoptosis and cell cycle control in response of colorectal cancer treated with preoperative radiochemotherapy

    Get PDF
    BACKGROUND: In previous analyses we identified therapy-induced upregulation of the CDK inhibitor p21(CIP/WAF-1 )and consequently decreased tumor cell proliferation or loss of Bax as adverse factors for survival in rectal cancer treated with radiochemotherapy. Here, we address the individual role of p53 and its transcriptional targets, p21(CIP/WAF-1 )and Bax, on apoptosis induced by individual components of multimodal anticancer therapy, i.e. 5-fluorouracil (5-FU), ionising γ-radiation (IR) and heat shock/hyperthermia. METHODS: We analysed tumor samples 66 patients with rectal carcinoma treated by a neoadjuvant approach with radiochemotherapy ± heat shock/hyperthermia for the expression and mutation of p53 and the expression of p21(CIP/WAF-1 )and Bax. These data were correlated with the tumor response. The functional relevance of p53, p21(CIP/WAF-1 )and Bax was investigated in isogeneic HCT116 cell mutants treated with 5-FU, IR and heat shock. RESULTS: Rectal carcinoma patients who received an optimal heat shock treatment showed a response that correlated well with Bax expression (p = 0.018). Local tumor response in the whole cohort was linked to expression of p21(CIP/WAF-1 )(p < 0.05), but not p53 expression or mutation. This dichotomy of p53 pathway components regulating response to therapy was confirmed in vitro. In isogeneic HCT116 cell mutants, loss of Bax but not p53 or p21(CIP/WAF-1 )resulted in resistance against heat shock. In contrast, loss of p21(CIP/WAF-1 )or, to a lesser extent, p53 sensitized predominantly for 5-FU and IR. CONCLUSION: These data establish a different impact of p53 pathway components on treatment responses. While chemotherapy and IR depend primarily on cell cycle control and p21, heat shock depends primarily on Bax. In contrast, p53 status poorly correlates with response. These analyses therefore provide a rational approach for dissecting the mode of action of single treatment modalities that may be employed to circumvent clinically relevant resistance mechanisms in rectal cancer

    Comparison of Chimerism and Minimal Residual Disease Monitoring for Relapse Prediction after Allogeneic Stem Cell Transplantation for Adult Acute Lymphoblastic Leukemia

    Get PDF
    AbstractLittle data are available on the relative merits of chimerism and minimal residual disease (MRD) monitoring for relapse prediction after allogeneic hematopoietic stem cell transplantation (HCT). We performed a retrospective analysis of serial chimerism assessments in 101 adult HCT recipients with acute lymphoblastic leukemia (ALL) and of serial MRD assessments in a subgroup of 22 patients. All patients had received myeloablative conditioning. The cumulative incidence of relapse was significantly higher in the patients with increasing mixed chimerism (in-MC) compared with those with complete chimerism, low-level MC, and decreasing MC, but the sensitivity of in-MC detection with regard to relapse prediction was only modest. In contrast, MRD assessment was highly sensitive and specific. Patients with MRD positivity after HCT had the highest incidence of relapse among all prognostic groups analyzed. The median time from MRD positivity to relapse was longer than the median time from detection of in-MC, but in some cases in-MC preceded MRD positivity. We conclude that MRD assessment is a powerful prognostic tool that should be included in the routine post-transplantation monitoring of patients with ALL, but chimerism analysis may provide additional information in some cases. Integration of these tools and clinical judgment should allow optimal decision making with regard to post-transplantation therapeutic interventions

    The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma.

    Get PDF
    Transcription factor AP-1 is constitutively activated and IRF4 drives growth and survival in ALK+ and ALK- anaplastic large cell lymphoma (ALCL). Here we demonstrate high-level BATF and BATF3 expression in ALCL. Both BATFs bind classical AP-1 motifs and interact with in ALCL deregulated AP-1 factors. Together with IRF4, they co-occupy AP-1-IRF composite elements, differentiating ALCL from non-ALCL. Gene-specific inactivation of BATFs, or global AP-1 inhibition results in ALCL growth retardation and/or cell death in vitro and in vivo. Furthermore, the AP-1-BATF module establishes TH17/group 3 innate lymphoid cells (ILC3)-associated gene expression in ALCL cells, including marker genes such as AHR, IL17F, IL22, IL26, IL23R and RORγt. Elevated IL-17A and IL-17F levels were detected in a subset of children and adolescents with ALK+ ALCL. Furthermore, a comprehensive analysis of primary lymphoma data confirms TH17-, and in particular ILC3-skewing in ALCL compared with PTCL. Finally, pharmacological inhibition of RORC as single treatment leads to cell death in ALCL cell lines and, in combination with the ALK inhibitor crizotinib, enforces death induction in ALK+ ALCL. Our data highlight the crucial role of AP-1/BATFs in ALCL and lead to the concept that some ALCL might originate from ILC3

    Reevaluation of the 22-1-1 antibody and its putative antigen, EBAG9/RCAS1, as a tumor marker

    Get PDF
    BACKGROUND: Tumor-associated antigens are appreciated as diagnostic markers, but they have also prompted tremendous efforts to develop tumor-specific immunotherapy. A previously cloned tumor-associated antigen, EBAG9, was initially defined by reactivity with the monoclonal antibody 22-1-1. Functionally, the EBAG9-encoded gene-product was believed to induce apoptosis in activated immune cells. However, using a cell-biological approach we identified EBAG9 as a Golgi-resident modulator of O-linked glycan expression, the latter product was then recognized by the 22-1-1 antibody. Secondly, EBAG9 expression was found physiologically in all murine tissues examined. This raised the question if EBAG9 is tumor-specific and mediates apoptosis itself or through O-linked glycans generated, among them the cognate 22-1-1 antigen Tn. METHODS: We have used immunohistochemistry to detect the expression of 22-1-1 and EBAG9 in various tissues. Correlation between expression of both antigens in cell lines was analysed by immunoblot and flow cytometry. Apoptosis was studied by using flow cytometry and Caspase-Glo™ 3/7 assay kit. Cellular distribution of EBAG9 was analysed by electron and confocal microscopy. RESULTS: Here, we compared expression of the 22-1-1 and EBAG9-defined antigens in normal and neoplastic tissues in situ. In contrast to 22-1-1 staining, EBAG9 is a ubiquitously expressed antigen in all normal and cancerous tissues. Functional studies on the role of 22-1-1 reactive material did not support any evidence for apoptosis induction. Employing electron and confocal microscopy, a refined subcellular localization of EBAG9 at the Golgi was obtained. CONCLUSION: We suggest that the estrogen-inducible EBAG9 gene-product and the 22-1-1 defined antigen are structurally and functionally separate antigens

    Interventionally implanted port catheter systems for hepatic arterial infusion of chemotherapy in patients with colorectal liver metastases: A phase II-study and historical comparison with the surgical approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high complication rates of surgically implanted port catheter systems (SIPCS) represents a major drawback in the treatment of isolated liver neoplasms by hepatic arterial infusion (HAI) of chemotherapy. Interventionally implanted port catheter systems (IIPCS) have evolved into a promising alternative that enable initiation of HAI without laparatomy, but prospective data on this approach are still sparse. Aim of this study was to evaluate the most important technical endpoints associated with the use of IIPCS for the delivery of 5-fluorouracil-based HAI in patients with colorectal liver metastases in a phase 2-study, and to perform a non-randomised comparison with a historical group of patients in which HAI was administered via SIPCS.</p> <p>Methods</p> <p>41 patients with isolated liver metastases of colorectal cancer were enrolled into a phase II-study and provided with IIPCS between 2001 and 2004 (group A). The primary objective of the trial was defined as evaluation of device-related complications and port duration. Results were compared with those observed in a pre-defined historical collective of 40 patients treated with HAI via SIPCS at our institution between 1996 and 2000 (group B).</p> <p>Results</p> <p>Baseline characteristics were balanced between both groups, except for higher proportions of previous palliative pre-treatment and elevated serum alkaline phosphatase in patients of group A. Implantation of port catheters was successful in all patients of group A, whereas two primary failures were observed in group B. The frequency of device-related complications was similar between both groups, but the secondary failure rate was significantly higher with the use of surgical approach (17% vs. 50%, p < 0.01). Mean port duration was significantly longer in the interventional group (19 vs. 14 months, p = 0.01), with 77 vs. 50% of devices functioning at 12 months (p < 0.01). No unexpected complications were observed in both groups.</p> <p>Conclusion</p> <p>HAI via interventionally implanted port catheters can be safely provided to a collective of patients with colorectal liver metastases, including a relevant proportion of preatreated individuals. It appears to offer technical advantages over the surgical approach.</p
    corecore