269 research outputs found
Recommended from our members
Conversion of carbon dioxide into storable solar fuels using solar energy
Nowadays, there are two main energy and environmental concerns, the first is the risk of running out of fossil fuels in the next few decades, and the second is the alarming increase in the carbon dioxide concentrations in the atmosphere, causing global warming and rise of see levels. Therefore, solar-driven technologies represent a substantial solution to fossil fuels dependence, global warming and climate change. Unlike most scientific research, which aim to use solar energy to generate electricity, solar energy can also be harnessed by recycling the carbon dioxide in the atmosphere through high-tech artificial photosynthesis with the objective of producing storable and liquid solar fuels from CO2 and water. There are two types of solar fuels, the first being hydrogen, which can be produced by mean of water splitting processes. The combustion of hydrogen generates water, which is a completely clean option for the environment. The second type of solar fuels consists of carbon-based fuels, such as methane (CH4), carbon monoxide (CO), or alcohols such as methanol (CH3OH) and ethanol (C2H5OH). The production to liquid solar fuels liquid fuels is of great interest, since they can be used in the current industrial infrastructures such as the automobiles' sector, without substantial changes in the vehicles' internal combustion engines. Therefore, guaranteeing a smooth transition from fossil fuel energy to renewable energy without radical economic consequences. Also, and most importantly, when these solar fuels are burned, they will only release the exact amount of CO2 which was initially used, which represents an optimal process for sustainable transport
Investigation of room temperature multispin-assisted bulk diamond 13C hyperpolarization at low magnetic fields
In this work we investigated the time behavior of the polarization of bulk
13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear
hyperpolarization is achieved by cross relaxation between two nitrogen related
paramagnetic defect species in diamond in combination with optical pumping. The
decay of the hyperpolarization at four different magnetic fields is measured.
Furthermore, we use the comparison with conventional nuclear resonance
measurements to identify the involved distances of the nuclear spin with
respect to the defects and therefore the coupling strengths. Also, a careful
look at the linewidth of the signal give valuable information to piece together
the puzzle of the hyperpolarization mechanism
Gold-Induced Fibril Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation
The question of how amyloid fibril formation is influenced by surfaces is crucial for a detailed understanding of the process in vivo. We applied a combination of kinetic experiments and molecular dynamics simulations to elucidate how (model) surfaces influence fibril formation of the amyloid-forming sequences of prion protein SUP35 and human islet amyloid polypeptide. The kinetic data suggest that structural reorganization of the initial peptide corona around colloidal gold nanoparticles is the rate-limiting step. The molecular dynamics simulations reveal that partial physisorption to the surface results in the formation of aligned monolayers, which stimulate the formation of parallel, critical oligomers. The general mechanism implies that the competition between the underlying peptide–peptide and peptide–surface interactions must strike a balance to accelerate fibril formation
Recommended from our members
Controlled electron-beam synthesis of transparent hydrogels for drug delivery applications
In this study, we highlight hydrogels prepared by electron-beam polymerization. In general, the electron-beam-polymerized hydrogels showed improved mechanical and optical transmittances compared to the conventional UV-cured hydrogels. They were more elastic and had a higher crosslinking density. Additionally, they were transparent over a broader wavelength range. The dependence of the mechanical and optical properties of the hydrogels on the number of single differential and total irradiation doses was analyzed in detail. The hydrogels were prepared for usage as a drug delivery material with methylene blue as a drug model. In the first set of experiments, methylene blue was loaded reversibly after the hydrogel synthesis. Electron-beam-polymerized hydrogels incorporated twice as much methylene blue compared to the UV-polymerized gels. Furthermore, the release of the model drug was found to depend on the crosslinking degree of the hydrogels. In addition, electron-beam polymerization enabled the irreversible binding of the drug molecules if they were mixed with monomers before polymerization
- …